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Context:

Target Device Clone Device

I [On Clone Device] For every k estimate the pdf of
−→
X | K = k.

k = 4k = 1 k = 2 k = 3

I [On Target Device] Estimate the pdf of
−→
X .

k = ?

I [Key-recovery] Compare the pdf estimations.
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Side Channel Attacks (Classical Approach)

Notations

I ~X observation of the device behaviour

I P public input of the processing

I Z target (a cryptographic sensitive variable Z = f (P,K))

Goal: make inference over Z, observing ~X

Pr[Z|~X]

Template Attacks

I Profiling phase (using profiling traces under known Z)

I manage de-synchronization problem
I mandatory dimensionality reduction
I estimate for each value of z

I Attack phase (N attack traces ~xi , e.g. with known plaintexts pi )

Log-likelihood score for each key hypothesis k

dk =
N∑
i=1

log Pr[~X = ~xi |Z = f (pi , k)]
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Defensive Mechanisms

+

Misaligning Countermeasures

I Random Delays, Clock Jittering, ...

I In theory: assume to be insufficient to provide security

I In practice: one of the main issues for evaluators

I =⇒ Need for efficient resynchronization techniques

Masking Countermeasure

I Each key-dependent internal state element is randomly split into 2 shares

I The crypto algorithm is adapted to always manipulate shares at 6= times

I The adversary needs to recover information on the two shares to recover K

I =⇒ Need for efficient Methods to recover tuple of leakage samples
that jointly depend on the target secret
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Motivating Conclusions

Now:
I preprocessing to prepare data

I Traces resynchronisation
I Selection of PoIs

I make strong hypotheses on the
statistical dependency
I e.g. Gaussian approximation

I characterization to extract
information
I e.g. Maximum Likelihood

The proposed perspective:
I preprocessing to prepare data

I Traces resynchronisation
I Selection of PoIs

I make strong hypotheses on the
statistical dependency
I e.g. Gaussian approximation

I Train algorithms to directly
extract information
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Deep Learning for Embedded Security Evaluation

Classification

Classification problem

Assign to a datum ~X (e.g. an image) a label Z among a set of possible labels
Z = {Cat,Dog,Horse}

Classifier

Pr[Z|~X]

SCA as a Classification Problem

0% 50% 100%

P(Z|X=x)

Z=1 Z=0x

Classifier
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Machine Learning Approach

Overview of Machine Learning Methodology

Human effort:

I choose a class of algorithms

Neural Networks

I choose a model to fit +
tune hyper-parameters

MLP, ConvNet

Automatic training:

I automatic tuning of
trainable parameters
to fit data

Stochastic Gradient Descent

aaa
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Convolutional Neural Networks

An answer to translation-invariance

0% 20% 40% 60%

Classification

Horse Dog Cat

Classifier

It is important to explicit the data translation-invariance
Convolutional Neural Networks: share weights across space
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Convolutional Neural Networks

An answer to translation-invariance

0% 10% 20% 30% 40% 50%

Classification

Horse Dog Cat

Classifier? ? ?

It is important to explicit the data translation-invariance
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Basic Example

Convolutional filtering: W = 2, nfilter = 4, stride = 1, padding = same. Max pooling
layer: W = stride = 3.
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Example: masked manipulation of a sensitive datum Z

Deep Learning Behaviour Against Masked Datum
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Training of Neural Networks
Trading Side-Channel Expertise for Deep Learning Expertise .... or huge computational power!

Training

Aims at finding the parameters of the function modelling for the
dependency btw the target value and the leakage.

The search is done by solving a minimization problem with respect to
some metric (aka loss function)

The training algorithm has itself some training hyper-parameters:
the number of iterations (aka epochs) of the minimization procedure,
the number of input traces (aka batch) treated during a single iteration.

The trained model has architecture hyper-parameters:
the size of the layers, the nature of the layers, the number of layers, etc.

Tricky Points

Find sound hyper-parameters is the main issue in Deep Learning: this can be
done thanks to a good understanding of the underlying structure of the
data and/or access to important computational power.
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The training algorithm has itself some training hyper-parameters:
the number of iterations (aka epochs) of the minimization procedure,
the number of input traces (aka batch) treated during a single iteration.

The trained model has architecture hyper-parameters:
the size of the layers, the nature of the layers, the number of layers, etc.

Tricky Points

Find sound hyper-parameters is the main issue in Deep Learning: this can be
done thanks to a good understanding of the underlying structure of the
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Deep Learning for Embedded Security Evaluation

Training of Neural Networks
Trading Side-Channel Expertise for Deep Learning Expertise .... or huge computational power!

Training

Aims at finding the parameters of the function modelling for the
dependency btw the target value and the leakage.

The search is done by solving a minimization problem with respect to
some metric (aka loss function)

The training algorithm has itself some training hyper-parameters:
the number of iterations (aka epochs) of the minimization procedure,
the number of input traces (aka batch) treated during a single iteration.

The trained model has architecture hyper-parameters:
the size of the layers, the nature of the layers, the number of layers, etc.

Tricky Points

Find sound hyper-parameters is the main issue in Deep Learning: this can be
done thanks to a good understanding of the underlying structure of the
data and/or access to important computational power.
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Creation of an open database for Training and Testing

ANSSI recently publishes

I source codes of secure implementations of AES128 for public 8-bit
architectures (https://github.com/ANSSI-FR/secAES-ATmega8515)
I first version: 10-masking + processing in random order
I second version: affine masking + processing in random order (plus other

minor tricks)

I data-bases of electromagnetic leakages
(https://github.com/ANSSI-FR/ASCAD)

I example scripts for the training and testing of models in SCA contexts

Goal

I Enable fair and easy benchmarking

I Initiate discussions and exchanges on the application of DL to SCA

I Create a community of contributors on this subject
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Nature of the Observations/Traces

Side-channel observations in ASCAD correspond to the masked processing of a
simple cryptographic primitive
Information leakage validated thanks to SNR characterization
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Validate that shares are manipulated at different times
Scripts are also proposed to add artificial signal jittering
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Our Training Strategy

Find a base model architecture and find training hyper-parameters for
which a convergence towards the good key hypothesis is visible

Fine-tune all the hyper-parameters one after another to get the best
efficiency/effectiveness trade-off

Table: Benchmarks Summary

Parameter Reference Metric Range Choice

Training Parameters

Epochs - rank vs time 10, 25, 50, 60, . . . , 100, 150 up to 100

Batch Size - rank vs time 50, 100, 200 200

Architecture Parameters

Blocks nblocks rank, accuracy [2..5] 5

CONV layers nconv rank, accuracy [0..3] 1

Filters nfilters,1 rank vs time {2i ; i ∈ [4..7]} 64

Kernel Size - rank {3, 6, 11} 11

FC Layers ndense rank, accuracy vs time [0..3] 2

ACT Function α rank ReLU, Sigmoid, Tanh ReLU

Pooling Layer - rank Max, Average, Stride Average

Padding - rank Same, Valid Same
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The Base Architecture

h Mean rank of the good-key hypothesis obtained with VGG-16, ResNet-50
and Inception-v3 w.r.t. different epochs:
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VGG-16 Architecture
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Comparisons with State-Of-the-Art Methods
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Deep Learning for Embedded Security Evaluation

Feedbacks & Open Issues

Feedbacks

I The number of epochs for the training is between 100 and 1000

I Model architectures are relatively complex (more than 10 layers)

I Data-bases for the training must be large

I Require important processing capacities (several GPUs, RAM memory,
etc.)

I Importance of cross-validation

Open Issues

I Models are trained to recover manipulated values (e.g. sbox outputs) but
not the key itself

I Current loss functions measure the accuracy of pdf estimations but not
the efficiency of the resulting attack

I Adaptation to get (very) efficient key enumeration algorithms
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Conclusions

I State-of-the-Art Template Attack separates
resynchronization/dimensionality reduction from characterization

I Deep Learning provides an integrated approach to directly extract
information from rough data (no preprocessing)

I Many recent results validate the practical interest of the Machine Learning
approach

I We are in the very beginning and we are still discovering how much Deep
Learning is efficient

I New needs:
I big data-bases for the training,
I platforms to enable comparisons and benchmarking,
I create an open community ”ML for Embedded Security Analysis”,
I encourage exchanges with the Machine Learning community,
I understand the efficiency of the current countermeasures

Thank You! Questions?
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