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Evolution of Research in Malware 
Analysis and Classifcation

Academic point of view

Focus on problems, not solutions

With a bit of exaggeration 
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Given an unknown program in binary form

extract possible behavior, 
classify as malicious or benign,
provide information about family
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“How do we analyze a program that does not 
want to be analyzed”

 Limitations of static analysis
 De-obfuscation and Unpacking
 Dynamic analysis sandboxes

 Overcoming the limitations of dynamic analysis
 Transparent instrumentation
 Stalling code detection
 Multi-path exploration
 Program stimulation
 …

 Network and host behavior analysis
 ...
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Even IF we had a perfect malware 
classifer, how do we distinguiish 
interesting samples from the rest ?



  

Equation Group Sample

(collected & analyzed 23 months before it was “discovered”) 
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 At the end of 2007, Symantec reported a total of 1.1M malware 
samples (mostly due to trojan droppers)

 Total malware samples went from 1M to 1B in ~8 years
 Daily collected samples went from Hundreds to Millions in ~10 years
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 At the end of 2007, Symantec reported a total of 1.1M malware 
samples (mostly due to trojan droppers)

 Total malware samples went from 1M to 1B in ~8 years
 Daily collected samples went from Hundreds to Millions in ~10 years

   
     Roughly one order of magnitude every 30 months
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1)  The number of samples is increasing 4x faster than the Moore’s Law !!

2)  Are previous studies still relevant today?
  (sadly, academia never repeats previous studies) 

3)  Lack of a representative dataset

4)  We are past the point-of-no-return for re-analyzing samples
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 (Missed?) Opportunities 
 Synergy of system security and machine learning
 Analytics → Data-Driven Malware Analysis

The Data
Analysis Phase

 



 The availability of a large amount of data made malware an attractive 
target for the machine learning community

 Difficult integration: 
 Security experts treat machine learning like black box Lego pieces
 Data scientists lack domain and problem knowledge 
 It happened before... e.g., in the NIDS and anomaly detection field

(see “Outside the closed world: On using machine learning for network intrusion detection”)
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How Many Samples are Packed ?How Many Samples are Packed ?
Panda [2007]  79%→

McAfee [2009]  80%→

Bayer [2011]  40%→

Intel [2014]  37% →

  
How many have VM detection capabilities ?

Bayer [2011]  < 12%→

Lindorfer [2011]  26%→

     Fireeye [2011]  → It's a Myth!
Intel [2012]  81% →

Microsoft [2014]  28%→

Symantec [2014]  18%–28%→

(63% custom or unknown)

??



How Long do we need to run each sample?

How many malicious samples also query popular domains?

What is the fraction of samples that do not belong
to polymorphic families? 

How prevalent is technique X?



Hey lookHey look.. A Squirrel !! A Squirrel !!
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Big Data should allow us to extract Intelligence,
Analytics, discover new Correlations, observe

General Trends and the evolution of the Big Picture

... and use this information to improve our
malware analysis pipeline
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  We analyze and store huge amount of information.. 
 but sadly we only use it as a giant cache  

  Plenty of confusing marketing statistics published by
 companies. With no information about the methodology
 or even the meaning of  the terms

  Automation is key, but sometimes (?) humans need to
 be in the loop 

  We need help from data scientists... 
 but they won’t solve the problem alone
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Goals

1)  Develop a dynamic analysis sandbox for Linux binaries (and IoT devices)

2)  Identify challenges and limitations of porting traditional techniques to 
 the new environment

3)  Understand differences in the malware characteristics (packing, obfuscantion, 
VM detection, privilege excalation, persistence...) wrt Windows malware



 Pipeline for static and dynamic analysis of Linux-based malware
 10.5K samples (from ~110 families according to avclass) fully analyzed
 Free service at https://padawan.s3.eurecom.fr/

    (list of samples and all paper reports available to download) 

https://padawan.s3.eurecom.fr/
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 Architecture Diversity
 Environment Diversity

 Loader
 Libraries
 Operating System / ABI
 root/user privileges
 ….

23% of the samples show a different behavior when
executed with root privileges.
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 Architecture Diversity
 Environment Diversity
 Behavior Diversity
 Intra-Family Diversity

E.g.: Tsunami
 9 architectures
 86% statically linked
 13% stripped
 different loaders
 different persistence mechanisms
 15% tested for privileged execution
 2.3% did not work in a VM
 ...



 Process Injection
 Process Interaction
 Deception
 Anti-debugging
 Anti-Execution
 Persistence
 Privilege Escalations
 Sandbox Detection
 Shell Commands
 Process Enumeration
 Required Privileges
 Packing
 Information Gathering



Diversity
 IoT Linux-based malware still in its infancy

 Already a broad range of behaviors and tricks

 ELF binaries could run anywhere from a thermostat to a large 
server

 New research needed to overcome the lack of information about the 
execution environment



Conclusion
 Malware Analysis is a multi-faced problem that requires a broad 

set of techniques
 Data Mining
 Machine learning
 Program analysis
 Binary analysis
 OS internals and design
 Network, System, Memory, Compilers
  ...
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Conclusion
 Multi-faced problem that requires a broad set of techniques

  ...

 Ranges from a “microscopic” level (flipping individual bits) 
to a “macroscopic” level (intelligence from billions of aggregated 
information)

 And to look at the large scale solutions, you need to understand
well the small details first

 The field is evolving rapidly… bringing new challenges!!
 Research in Malware Analysis has never been so interesting



Contact

          davide.balzarotti@eurecom.fr

     
          @balzarot

          http://s3.eurecom.fr/~balzarot

mailto:davide.balzarotti@eurecom.fr
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