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Introduction

Introduction

Big data have come true with the new millennium.

Any human activity leaves a digital track that someone
collects and stores:

Sensors of the Internet of Things
Social media
Machine-to-machine communication
Mobile video, etc.
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Introduction

Desiderata in big data anonymization

Anonymized big data that are published should yield results
similar to those obtained on the original big data for a broad
range of exploratory analyses.

They should not allow unequivocal reconstruction of any
subject’s profile.

A privacy model for big data should satisfy at least
(Soria-Comas and Domingo-Ferrer 2015):

Composability
(Quasi-)linear computational cost
Linkability
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Introduction

Composability

A privacy model is composable if its privacy guarantee holds
(perhaps in a limited way) after repeated application.

In other words, a privacy model is not composable if pooling
independently released data sets, each of which satisfies the
model separately, can lead to a violation of the model.

Composability can be evaluated between data sets satisfying
the same privacy model, different privacy models, or between
an anonymized data set and a non-anonymized data set (the
latter is the most demanding case).

Composability is needed to cope with the velocity and variety
features of big data.
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Introduction

(Quasi-)linear computational cost

Low cost is needed to cope with the volume feature of big
data.

Normally, there are several SDC methods that can be used to
satisfy a privacy model.

The computational cost depends on the selected method.

The desirable costs would be O(n) or at most O(n log n), for
a data set of n records.

For methods with higher cost, blocking can be used, but it
can damage the utility and/or privacy of the resulting data.
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Introduction

Linkability

In big data, the information on a particular subject is collected
from several sources (variety feature of big data).

Hence, the ability to link records corresponding to the same
individual or to similar individuals is critical.

Thus, anonymizing data at the source should preserve
linkability to some extent.

But... linking records corresponding to the same subject
decreases the subject’s privacy
=⇒ the accuracy of linkage should be lower with anonymized
data sets than with original data sets.
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Big data protection under k-anonymity

Privacy models: k-anonymity

k-Anonymity (Samarati & Sweeney 1998)

A data set is said to satisfy k-anonymity if each combination of
values of the quasi-identifier attributes in it is shared by at least k
records (k-anonymous class).

=⇒ Usually enforced via generalization and suppression in
quasi-identifiers, but also reachable via microaggregation
(Domingo-Ferrer and Torra 2005)
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Big data protection under k-anonymity

Privacy models that extend k-anonymity

l-Diversity (Machanavajjhala et al. 2007)

A data set is said to satisfy l-diversity if, for each group of records
sharing a combination of quasi-identifier attributes, there are at
least l “well-represented” values for each confidential attribute.

t-Closeness (Li et al. 2007)

A data set is said to satisfy t-closeness if, for each group of records
sharing a combination of quasi-identifier attributes, the distance
between the distribution of the confidential attribute in the group
and the distribution of the attribute in the whole data set is no
more than a threshold t.
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Big data protection under k-anonymity

Big data protection under k-anonymity

In a context of big data, it is hard to determine the subset of
QI attributes (attributes that can be used by an attacker to
link with external identified databases).

The safest option is to consider that all attributes are QI
attributes.
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Big data protection under k-anonymity

Composability of k-anonymity

k-Anonymity was designed to protect a single data set and is
not composable in principle.

If several k-anonymous data sets have been published that
share some subjects, the attacker can mount an intersection
attack to discard some records in the k-anonymous classes as
not corresponding to the target subject (based on the latter’s
confidential attributes).

To reach composability, the controllers ought to coordinate so
that, for the subjects shared by two data sets, their
k-anonymous classes contain the same k subjects.

If such coordination is infeasible, see Domingo-Ferrer and
Soria-Comas (2016) for alternative strategies.
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Big data protection under k-anonymity

Intersection attack against k-anonymity

R1, . . . ,Rn ← n independent data releases
P ← population consisting of subjects present in all R1, . . . ,Rn

for each individual i in P do
for j = 1 to n do

eij ←equivalence class of Rj associated to i
sij ←set of confidential values of eij

end for
Si ← si1 ∩ si2 ∩ . . . ∩ sin

end for
return S1, . . . ,S|P|
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Big data protection under k-anonymity

Computational cost of k-anonymity

k-Anonymity is attained by modifying the values of QI
attributes either by combining generalization and suppression
(Samarati and Sweeney 1998) or via microaggregation
(Domingo-Ferrer and Torra 2005).

Optimal generalization/suppression and optimal
microaggregation are NP problems.

Using heuristics and blocking one can reach O(n log n)
complexities, where n is the number of records.
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Big data protection under k-anonymity

Linkability of k-anonymity

For a subject known to be in two k-anonymous data sets, we
can determine and link the corresponding k-anonymous
classes containing her.

If some of the confidential attributes are shared between the
data sets, the linkage accuracy improves (one can link within
k-anonymous classes).
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Big data protection under k-anonymity

Summary on k-anonymity for big data

For k-anonymity to be composable, the controllers sharing
subjects must coordinate or follow suitable strategies.

There are quasi-linear heuristics for k-anonymity.

Linkability is possible at least at the k-anonymous class level.

With some coordination effort, k-anonymity is a reasonable
option to anonymize big data.
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Big data protection under differential privacy

Privacy models: ε-differential privacy

ε-Differential privacy (Dwork 2006)

A randomized query function F gives ε-differential privacy if, for all
data sets D1, D2 such that one can be obtained from the other by
modifying a single record (neighbor data sets), and all
S ⊂ Range(F )

Pr(F (D1) ∈ S) ≤ exp(ε)× Pr(F (D2) ∈ S).

Usually enforced via Laplacian noise addition.

Later extended for data set publishing (Soria-Comas et al.
2014; Xiao et al. 2007; Xu et al. 2012; Zhang et al. 2014).
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Big data protection under differential privacy

Big data protection under differential privacy

ε-Differential privacy (DP) offers strong privacy guarantees.

The smaller ε, the more privacy.

DP can be reached via noise addition or by generating
synthetic data from a differentially privacy model (e.g. a
histogram).

A synthetic data set can be either partially or fully synthetic.

In partial synthesis, only values deemed too sensitive are
replaced by synthetic data.
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Big data protection under differential privacy

Composability of DP: sequential composition

Sequential composition refers to a sequence of computations, each
of them providing differential privacy in isolation, providing also
differential privacy in sequence.

Theorem

Let κi (D), for some i ∈ I , be computations over D providing
εi -differential privacy. The sequence of computations (κi (D))i∈I
provides (

∑
i∈I εi )-differential privacy.
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Big data protection under differential privacy

Composability of DP: parallel composition

Parallel composition refers to several ε-differentially private
computations each on data from a disjoint set of subjects yielding
ε-differentially private output on the data from the pooled set of
subjects.

Theorem

Let κi (Di ), for some i ∈ I , be computations over Di providing
ε-differential privacy. If each Di contains data on a set of subjects
disjoint from the sets of subjects of Dj for all j 6= i , then
(κi (Di ))i∈I provides ε-differential privacy.
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Big data protection under differential privacy

Composability of DP for data sets

Sequential composition. The release of εi -differentially private
data sets Di , for some i ∈ I , is (

∑
i∈I εi )-differentially private.

That is, by accumulating differentially private data about a
set of individuals, differential privacy is not broken but the
level of privacy decreases.

Parallel composition. The release of ε-differentially private
data sets Di refering to disjoint sets of individuals, for some
i ∈ I , is ε-differentially private.
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Big data protection under differential privacy

Computational cost of DP

DP by noise addition has linear cost O(n).

It has been suggested to use other methods to attain DP with
improved utility:

Data synthesis (Cormode et al. 2012; Zhang et al. 2014) has a
higher computational complexity.
Microaggregation step prior to noise addition (Sánchez et al.
2014; Soria-Comas et al. 2014) has complexity O(n2) or
O(n log n) depending on whether blocking is used.

21 / 43



Données massives et modèles de vie privée

Big data protection under differential privacy

Linkability of DP

In general, there is no linkability between two DP data sets
generated via noise addition or as fully synthetic data.

Partially synthetic data sets, although they do not satisfy
strict DP, allow accurate linkage.
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Big data protection under differential privacy

Summary on DP for big data

DP has good composability properties, which may be suitable
to anonymize dynamic data.

DP has also a low computational cost, which may be suitable
for very large data sets.

Linkability across differentially private data sets is only feasible
if the data sets share unaltered attributes.

The main problem with DP is that it does not provide
significant utility for exploratory analyses unless the ε
parameter is quite large.
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Connections between privacy models

Connections between privacy models

We show in Domingo-Ferrer and Soria-Comas (2018) that the
following privacy models are interconnected around the principles
of deniability and permutation

Randomized response

Post-randomization

Differential privacy

t-Closeness
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Connections between privacy models

Randomized response, plausible deniability and PRAM

Randomized response (RR)

Let X be an attribute containing the answer to a sensitive
question. If X can take r possible values, then the randomized
response Y (Greenberg et al. 1969) reported by the respondent
instead of X is computed using

P =

 p11 · · · p1r
...

...
...

pr1 · · · prr


where puv = Pr(Y = v |X = u), for u, v ∈ {1, . . . , r} denotes the
probability that the randomized response is v when the
respondent’s true attribute value is u.
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Connections between privacy models

Randomized response, plausible deniability and PRAM

Randomized response: estimates

Let π1, . . . , πr be the proportions of respondents whose true
values fall in each of the r categories of X .

Let λv =
∑r

u=1 puvπu for v = 1, . . . , r , be the probability of
the reported value Y being v .

Let λ = (λ1, . . . , λr )T and π = (π1, . . . , πr )T .

Then λ = PTπ.

If λ̂ is the vector of sample proportions corresponding to λ
and P is nonsingular:

π̂ = (PT )−1λ̂.
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Connections between privacy models

Randomized response, plausible deniability and PRAM

The privacy model of randomized response: plausible
deniability

The privacy guarantee RR offers to respondents are plausible
deniability and secrecy:

By the Bayes’ formula:

p̂vu = Pr(X = u|Y = v) =
puvπu∑

u′=1 pu′vπu′
.

Given a reported Y = v , deniability can be measured as

H(X |Y = v) = −
r∑

u=1

p̂vu log2 p̂vu.

If the probabilities within each column of P are identical, then
p̂vu = πu, for u, v ∈ {1, . . . , r}, and H(X |Y = v) = H(X ) for
any v , and thus H(X |Y ) = H(X ) (Shannon’s perfect secrecy).
The price paid for perfect secrecy is a singular matrix P, so no
unbiased estimator π̂ can be computed.
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Connections between privacy models

Randomized response, plausible deniability and PRAM

Randomized response: a local version of PRAM

Matrix P looks exactly as the PRAM transition matrix.

The main difference is that in RR randomization is done by
the respondent, whereas in PRAM it is done by the data
controller.

Thus, RR is a local anonymization method avant la lettre:
when RR was invented, the notion of anonymization did not
exist, let alone local anonymization.
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Connections between privacy models

Randomized response and differential privacy

Randomized response and differential privacy

Wang et al. (2016) show that RR is ε-differentially private if

eε ≥ max
v=1,...,r

maxu=1,...,r puv
minu=1,...,r puv

.

We can assert:

If the maximum ratio between the probabilities in a column of
P is bounded by eε, the influence of the real value X on the
reported value Y is limited.

When ε = 0, in the above bound, the probabilities within each
column of P are identical, and RR provides perfect secrecy.

Thus, DP with strictest privacy (ε = 0) offers perfect secrecy.
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Connections between privacy models

Randomized response and differential privacy

Explaining large ε in DP using deniability

When one takes not-so-small ε, the intuition of DP is unclear:
it is no longer tenable that the presence or absence of any
single record is unnoticeable.

The connection of DP with RR and hence with deniability
helps understanding what large ε implies.

E.g., if ε = 2, in some columns of P the probability ratio may
be as large as e2 = 7.389. If r = 2, one might have a column
with p1v = 0.7389 and p2v = 0.1. Thus, after reporting
Y = v , the most likely value is X = 1 and there is only a
small margin to deny it. Thus, clearly ε = 2 does not seem to
offer enough privacy.
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Connections between privacy models

Differential privacy and t-closeness

Differential privacy and t-closeness

Given two distribution F1 and F2, consider the distance

d(F1,F2) = max
i=1,2,··· ,t

{
PrF1(xi )

PrF2(xi )
,

PrF2(xi )

PrF1(xi )

}
.

Proposition (Domingo-Ferrer and Soria-Comas, 2015) Let kI (D)
be the function that returns the view on subject I ’s sensitive
attributes given a data set D. If D satisfies exp(ε/2)-closeness
when using the above distribution distance, then kI (D) satisfies
ε-differential privacy. In other words, if we restrict the domain of
kI to exp(ε/2)-close data sets, then we have ε-differential privacy
for kI .
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Connections between privacy models

Differential privacy and t-closeness

DP and intruder’s knowledge gain via t-closeness

The previous proposition can explain DP in terms of the
intruder’s knowledge gain on the sensitive attribute value of a
target respondent if the intruder can determine the
respondent’s cluster.

E.g. take DP with ε = 2. By the proposition, the probability
weight attached to a certain value of a sensitive attribute X
can grow by a factor e ≈ 2.718 if the target individual’s
cluster is learnt by the intruder.
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Connections between privacy models

Differential privacy and t-closeness

DP and intruder’s knowledge gain via t-closeness (II)

To decide whether a probability has grown too much, consider
that the reported value v is the cluster identifier and
probabilities p̂vu = Pr(X = u|Y = v), for u = 1, . . . , r are the
probabilities assigned by the cluster-level distribution to the
values of the sensitive attribute within the cluster.

Determining the real X given the reported Y becomes
determining the target respondent’s sensitive value X given
the target respondent’s cluster Y .

We can use a deniability argument to assess whether the
cluster-level distribution is too inhomogeneous.
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Connections between privacy models

Differential privacy and t-closeness

Example deniability argument to assess cluster-level
distribution

Take ε = 2 and assume the sensitive attribute can take r = 5
different values, with uniform data set-level distribution (prob.
1/5 for each value).

A cluster-level distribution with one value having relative
frequency 1/5× exp(1) = 0.5436 and the remaining four
values 0.1141 satisfies exp(1)− closeness.

The cluster-level distribution makes guessing the sensitive
attribute value much easier than the data set-level distribution
(thus ε = 2 does not offer enough protection).
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Connections between privacy models

PRAM and the permutation paradigm

Reverse mapping

Domingo-Ferrer and Muralidhar (2016):

Require: Original attribute X = {x1, x2, · · · , xn}
Require: Anonymized attribute Y = {y1, y2, · · · , yn}

for i = 1 to n do
Compute j = Rank(yi )
Set zi = x(j) (where x(j) is the value of X of rank j)

end for
return Z = {z1, z2, · · · , zn}
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Connections between privacy models

PRAM and the permutation paradigm

The permutation paradigm

The output Z is a permutation of X and has the same rank
order as Y .

Thus any anonymization procedure can be viewed as a
permutation (X into Z ) followed by residual noise addition (Z
into Y ) that does not alter ranks.
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Connections between privacy models

PRAM and the permutation paradigm

PRAM and the permutation paradigm

PRAM does not permute attribute values in the data set,
rather it permutes in the domain of attributes.

Hence, PRAM should be viewed in terms of the permutation
paradigm as permutation plus noise.

Hence, RR can also be viewed as permutation, and so can DP
and so can t-closeness.
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Conclusions and further research

Conclusions and further research

There is a debate on whether big data are compatible with
the privacy of citizens.

We have stated the desirable properties of privacy models for
big data (composability, low computation, linkability).

We have examined how well the two main privacy models
(k-anonymity and ε-differential privacy) satisfy those
properties.

None of them is entirely satisfactory, although k-anonymity
seems more amenable to big data protection.

We highlighted connections between the main privacy models
that might result in synergies between them in order to tackle
big data:

The principles underlying all those models are deniability and
permutation.
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Conclusions and further research

References II

J. Domingo-Ferrer and V. Torra (2005) Ordinal, continuous
and heterogeneous k-anonymity through microaggregation,
Data Mining and Knowledge Discovery 11(2):195-212.

C. Dwork (2006) Differential privacy, in ICALP06, LNCS 4052,
Springer, pp. 1-12.

B. G. Greenberg, A.-L. A. Abul-Ela, W. R. Simmons and D. G.
Horvitz (1969) The unrelated question randomized response
model: theoretical framework. Journal of the American
Statistical Association, 64(326):520-539.

N. Li, T. Li and S. Venkatasubramanian (2007) t-Closeness:
privacy beyond k-anonymity and l-diversity, in ICDE07, pp.
106-115.

A. Machanavajjhala, D. Kifer, J. Gehrke and M.
Venkitasubramaniam (2007) l-Diversity: privacy beyond
k-anonymity, ACM Trans. Knowl. Discov. Data 1(1):3.

40 / 43



Données massives et modèles de vie privée
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