Applying formal methods

for
software vulnerability detection & analysis

Laurent Mounier

VERIMAG / Université Grenoble-Alpes

Mai 2017

w \ UNIVERSITE Grenoble III‘P\
esimac ¢ Grenoble

% Alpes /7

1/38

Vérimag (Université Grenoble-Alpes, CNRS, Grenoble INP)

m lead by Marie-Laure Potet and David Monniaux
m main research domains :

» Abstract interpretation and decision procedures
» Proofs of correctness using Coq
» Code analysis for security

2/38

Vérimag (Université Grenoble-Alpes, CNRS, Grenoble INP)

m lead by Marie-Laure Potet and David Monniaux
m main research domains :

» Abstract interpretation and decision procedures
» Proofs of correctness using Coq
» Code analysis for security

m (binary) code analysis for security : vulnerability, exploitability
m code robustness to fault injection
m application domains :

general purpose and/or open-source software,

certification & common criteria,
loT & industrial systems (Scada)

Context

Binsec (and other projects : Sertif, Sacade, Aramis, SecureloT)
Collaborations :

CEA, CESTI, Tiempo, etc.

Cyber Alpes Institute

Securimag ?

4/38

Outline

Software Vulnerability Detection and Analysis

Software Security
The ability of a SW to correctly operate under malicious attacks

6/38

Software Security
The ability of a SW to correctly operate under malicious attacks

“correctly operate” ?

m correctness of security functionalities (crypto, access control, etc.)
m control-flow integrity (no crash, no arbitrary code execution)

m confidentiality & integrity of the (sensible) code/data

— mostly what the SW should not do ...

7/38

Software Security
The ability of a SW to correctly operate under malicious attacks

“correctly operate” ?

m correctness of security functionalities (crypto, access control, etc.)
m control-flow integrity (no crash, no arbitrary code execution)

m confidentiality & integrity of the (sensible) code/data

— mostly what the SW should not do ...

“malicious attacks” ?
attackers = users + execution plateform, knowing :
m the target software : code + libraries, vulnerabilities, patches

m the execution environment : OS/HW architecture &
protections

— much beyond “unexpected input/execution conditions”

secure software # robust/safe/fault-tolerant software

8/38

Security code analysis = functional code analysis

m well-defined concrete attack scenarii (e.g., CVEs), attack trees,
etc.

m threat quantification (attacker expertise, probability of
triggering a vuln)

m formal models of attackers

m etc.

— code security to be evaluated in its execution context . ..

m qualification/quantification of the vulnerability assessment

e.g., bug prioritization, rating the attack potentials for certification

m produce a PoC or an exploit :
exploitability analysis ~» concrete attack example

m etc.

Software vulnerabilities

A software bug that could be exploited to gain privileges
on a computer system [Wikipedia]

m Memory safety (buffer overflow, dangling pointer, etc)
m Unsecure input handling, improper use of an API, resource leaks

m Unsecure use of the OS/HW components (side-channels), etc.

—> Low-level vs high-level vulnerabilities

m Programming Language does mater
(type safety, undefined behaviors, reflection, etc.)

m Compiler does matter
(memory layout, optimization level, warning flags, etc.)

m OS and HW does matter (cache hierarchy, memory management, etc.)

10/38

Looking at the defense side?

A multi-level protection system ...

Programming languages

Coding rules and patterns

Compilers
+ contre-mesures fault injections
+ CFI

Operating System

Hardware

11/38

But still a major concern . ..

m 14724 CVE in 2017

» grew 31 % compared to 2016
» one third of them have public exploits

m Vulnerability Summary for the Week of March 27, 2017 :
https://www.us-cert.gov/ncas/bulletins/SB17-093

m And still a lucrative market . ..
https://zerodium. com/program.html

12/38

https://www.us-cert.gov/ncas/bulletins/SB17-093
https://zerodium.com/program.html

Existing approaches for vulnerability detection

m Dynamic Analysis
m Static analysis

m Fuzzing

13/38

Fuzzing and dynamic analysis

source/binary code instrumentation for runtime error detection
Valgrind (DBI) and AdSan (CTI)
able to detect most memory safety errors

(stack and heap overflows, use-after-free, memory leaks, etc.)
between 2x and 20x slowdown
(almost) no false positives . ..

14 /38

Exploitability analysis

Peu de choses sur exploitabilite ! (ex. AFL)
reverse 7 IDA Pro ... (de facto tool), etre compatible?
qqs papiers, CGC?

15/38

On the academic side

16 /38

Code example 1 (vulnerability and exploitability)

© 00 N O WN -

int main (int argc, char x*argv([])
{ char x=0 ;

char t1[8] ;
int 1i;
for (i=0;i<=atoi(argv[2]);i++)

t1[il= atoi(argv([1]) ;
if (x !'= 0) printf ("You win !\n") ;
else printf ("You loose ...\n") ;
return 0 ; }

Variable x is never modified = expected result = You loose?

17/38

Code example 1 (vulnerability and exploitability)

© 00 N O WN -

int main (int argc, char x*argv([])
{ char x=0 ;

char t1[8] ;

int 1i;

for (i=0;i<=atoi(argv[2]);i++)
t1[il= atoi(argv([1]) ;

if (x !'= 0) printf ("You win !\n") ;
else printf ("You loose ...\n") ;
return 0 ; }

Variable x is never modified = expected result = You loose?

examplel 2 7, exemplel 2 11, examplel 2 17:
You loose ..., You win ..., non termination

18/38

Code example 1 (vulnerability and exploitability)

1| int main (int argc, char x*argv([])

21|{ char x=0 ;

3 char t1[8] ;

4 int 1i;

5 for (i=0;i<=atoi(argv[2]);i++)

6 t1[il= atoi(argv([1]) ;

7 if (x !'= 0) printf ("You win !\n") ;

8 else printf ("You loose ...\n") ;
9 return 0 ; }

Variable x is never modified = expected result = You loose?
examplel 2 7, exemplel 2 11, examplel 2 17:
You loose ..., You win ..., non termination

examplel with stack protection:
You loose ..., **x stack smashing detected **x*, xxx*
stack smashing detected **x*

19/38

Code exemple 2 : VerifyPIN and fault injection

1 BOOL byteArrayCompare (UBYTE* al, UBYTE* a2, UBYTE size)

2 {

3 int i; BOOL status = C_FALSE; BOOL diff = C_FALSE;

4 for(i = 0;i<size;i++) if(al1l[il'= a2[i]) diff = C_TRUE;

5 if(i'=size) countermeasure();

6 if (diff==C_FALSE) status=C_TRUE; else status=C_FALSE;

7 return status;

8 1}

9

10 BOOL verifyPIN_5()

11 {

12 g_authenticated = C_FALSE;

13 if(g_ptc >= 0) { g_ptc--;

14 if (byteArrayCompare (g_userPin,g_cardPin ,PIN_SIZE)==C_TRUE)
15 if (byteArrayCompare (g_cardPin,g_userPin ,PIN_SIZE)==C_TRUE)
16 {g_ptc = 3; g_authenticated = C_TRUE; return C_TRUE; }
17 else countermeasure(); }

18 return C_FALSE;

19 }

= code hardened with counter-measures

20/38

Analysing the source code is not enough . ..

m optimisation, protections can disappear
m effects of unspecified/undefined behaviours (> 200 cases in C)

m memory layout :
stack, heap, exception handler, method tables, etc

m whole source code is not available :
library, close-source, obfuscated code, etc.

m from high-level to binary level, including the compiling process
and execution plateform

m countermeasures can be introduced and combined at each level

21/38

Binary code analysis

— A preliminary step : understanding binary code . ..

a0@ARAA0 push ebp

00000061 nou ebp, esp

00000003 movzx ecx, [ebp+arg_8]
01010100 01101000 80008007 pop ebp
01101001 01101110 aaoo0008 novzx dx, cl

0000006C 1 , [edx+ed
01101011 00100000 sannanor .
01100100 01101001 006000011 shl eax, 2
01100110 01100110 aeeeaE1Y add eax, edx
01100101 01110010 20000015 S
01100101 01101110 00006018 shr €1, 1
01110100 00101110 baasasth add al.ecl

0000001F shr al, s

00000022 novzx eax, al

00080825 retn

Disassembling . ..
But undecidable in general! (key issue = distinguishing code from data)

— Next steps : static and or dynamic assembly code analysis ...

22/38

Static code analysis (abstract interpretation)
— abstract semantics to (over-) approximate the code behaviour

m correctness w.r.t. disassembled code ~» no false negatives

m scalability

m how to take into account libraries, interactions with the OS, ...

m difficulty to produce a PoC or an exploit

assembly code

m data structure & CFG recovery (function frames, call/return, etc.)

m adapted memory models, uninitialized values (esp, ebp ...)

Tools : CodeSonar, Veracode, Binsec, Bap, etc. .

Dynamic and Concolic Execution (white-box fuzzing)
— code execution + code instrumentation + symbolic reasonning

m “only” requires execution and instrumentation facilities

m can exhibit vulnerable executions

m execution time overhead

m incompleteness ~» false negatives

(input generation to be driven by a guiding strategy or coverage criteria)

fuzzing ~» crashes ~» derive some exploits ?

combination with dynamic checkers (AdSan, Valgrind)

Tools : AFL (fuzzer), SAGE, S2E, AngR, Triton (DSE). ..

24/38

Code analysis for security at Vérimag

Combination of static and dynamic analyses

Combination of high-level and low level analyses

m Counter-measures analysis and attack models

m Software vulnerability detection and analysis
(ANR Binsec 2013-2017, Josselin Feist's thesis)

m Robustness evaluation against fault injections
(ASTRID Sertif 2014-2017, Louis Dureuil’s thesis)

25/38

Outline

Using formal approaches : which challenges?

Outline

Combining Static and Concolic execution for UaF detection

Use after Free example

© 00N O WN -

e e e Y
0 ~NO b WN = O

p=malloc(sizeof (int));

p_alias=p; // p and p_alias points
// to the same addr
read (f,buf ,255) ; // buf is tatinted

if (strncmp (buf ,"BAD\n" ,4)==0)

{ free(p); // exit() is missing
3
else{ .. // some computation
}

if (strncmp (&buf [4],"is a uaf\n",9)==0)
{ p=malloc(sizeof (int)); }
else{ p=malloc(sizeof (int));
p_alias=p; }

*p=42 ; // mot a uaf
*p_alias=43 ; // waf i1f 6 and 14 = true

28/38

Use after Free example

o O WN -

12
13
14
15
16
17
18

p=malloc(sizeof (int));

p_alias=p; // p and p_alias points
// to the same addr
read (f,buf ,255) ; // buf is tatinted

if (strncmo (buf ."BAD\n" .4)==0)

m Difficult to detect (distant events, reasoning with heap, ..)
m No easy "pattern" (like for buffer overflow / string format)

m Lots of Use-After-Free in browsers and in other apps

(proftpd CVE-2011-4130, privoxy CVE-2015-1031, openssh...)
it (strncmp (&buf 4],"1is a uat\n",9)==0)

{ p=malloc(sizeof (int)); }
else{ p=malloc(sizeof (int));

p_alias=p; }
*p=42 ; // mot a uaf
*p_alias=43 ; // uwaf if 6 and 14 = true

29/38

Josselin Feist's thesis approach

m Static analysis to extract potential vulnerable paths
m Dynamic Symbolic Execution to confirm Use-after-Free

m application to real codes (binary pbs + scalability)

Static analysis Symbolic execution

| Interesting part
ﬂgﬂg of the binary
Binary ——»| 5 =

= T

Inputs generation

—— PoC

30/38

Static analyzer : GUEB

m dangerous path discovery : pointer and aliases, inter-procedural

m Use-After-Free characterization : 2 heap models

- - REIL CFG Sub-graph leading
x86 CFG (protobuf) GUEB to potential UaF

m some (unsound) heuristics : loop unrolling and inlining, . ..

m a very separated memory model taking into account
uninitialized memory (ebp, esp, ...)

(Ocaml) Open source : https://github.com/montyly/gueb

31/38

https://github.com/montyly/gueb

Resulting slice on Example

© 00N OSWN P

p=malloc(sizeof (int));

p_alias=p; // p and p_alias points
// to the same addr

read (f,buf ,255); // buf is tainted

if (strncmp (buf,"BAD\n",4)==0){
free(p);
// ezit() is missing
¥
else{
// some computation

}

if (strncmp (&buf [4],"is a uaf\n",9)
==0){

p=malloc(sizeof (int));

else{
p=malloc(sizeof (int));
p_alias=p;

}

*p=42 ; // not a uaf
*p_alias=43 ; // waf if 6 and 1/ =
true

p= mallocO
mallocO : allocated

3 frec
mallocO : freed

p_alias = malloc!

use mallocO | malloc]

32/38

GUEB : Experimentations

m Several experiments : UaF detection accuracy (no real existing
benchmark), applicability to real applications (below) ,

scalability (400 binaries).

m Several new Use-After-Free and referenced CVE found
(CVE—2015—5221, CVE-2015-8871, CVE—2016-3177)

name #REIL ins | time #UAF | #EP | max size reached
alsabat 99 933 7s 1 10 0

gnome-nettool (-00) | 226 514 16s 4 56 0

gnome-nettool 260 882 17s 7 76 0

gifcolor * 233 303 21s 15 13 0

jasper * 2154 927 | 4m23s | 255 205 5

accel-ppd 3907 862 | 5mbs 35 299 0

openjpeg * 2170 081 | 6m1l0s | 329 305 12

33/38

Dynamic Symbolic Execution

Binary ———

Static analysis

|
T

Interesting part
of the binary

34/38

DSE Features

m Guided by slices and distance metrics
m C/S policies (ISSTA 2016)

m reinforcing the path predicate I with the set of constraints :
af = am A ay € [am, am + Sizeajioc — 1] (1)

m Data-dependency between ar and a,, and between a, and ar
(no symbolic value for ap, violating (1)).

m Obtain a model m = (i, s) from I, extract constraints C on s
from P(i) and resolve M A C and so on ...

Implementation in the BinSec platform + XP

m based on the BinSec open source platform offering semantic
binary level analyses : disassembly, simulation, symbolic
execution, static analysis

m Our DSE : selection strategies, guiding modules and heuristics

m [http://binsec.gforge.inria.fr/tools

m 20 mins
m 9 test cases generated, one triggering the Use-After-Free
m PoC :

MIF
component

36/38

http://binsec.gforge.inria.fr/tools

Experimental validation of our approach

’ Name ‘ Time ‘ MIF line ‘ UAF found ‘ # Paths

DSE (in BINSEC/SE)

WS-Guided+LDH 20m 3min Yes 9
WS-Guided 6h 3min No 44
DFS(slice) 6h 3min No 68

DFS 6h 3min No 354
standard fuzzers (arbitrary seed)
AFL 7h < 1min No 1747
Radamsa 7h > 1h No ~ 1000000*
standard fuzzers (MIF seed)
(Mlléljreput) < 1min | < 1min Yes <10
(A’;f,fainm:jt) < 1min | < 1min Yes <10

T AFL generates more input, 174 is the number of unique paths.

Y For radamsa it is not trivial to count the number of unique path.

Table: JasPer evaluation

37/38

Combination is fruitful

= An end-to-end approach for vulnerability detection,
with scalability and binary code concerns.

dangerous/vulnerable path discovery concerns
~> a set of CFG slices to explore (possibly incomplete)

scalability, but with some unsoud heuristics

guided trace exploration towards given CFG slices
C/S policies

dedicated heuristics to speed up the exploration

38/38

Outline

Lightweight runtime reverse engineering of binary code

Conclusion

m reasoning on binary code, with :

> an attacker model
» beyond normal executions (after a crash, on a corrupted code)

— needs to consider non standard semantics . ..

m more than “bug finding”

» exploit generation, qualitative and quantitative assessment
» counter-measure analysis (accuracy and efficiency)

m from high level to low level analyses

m adaptable certification process (TEE, loT, ...)

Security in Grenoble-Alpes community

SCCyPhy :

Structure the research & education community in computer security
and cryptography :

m Design and Analysis of Cryptographic Components (DACC)
m Code Protection and Analysis (CAP)
m Security and Privacy for Pervasive Systems (SPPS)

Members : Université Grenoble-Alpes, Grenoble INP, INRIA, CEA

Next events :

41/38

	Software Vulnerability Detection and Analysis
	Using formal approaches: which challenges ?
	Combining Static and Concolic execution for UaF detection
	Lightweight runtime reverse engineering of binary code
	Conclusion

