
Applying formal methods
for

software vulnerability detection & analysis

Laurent Mounier

VERIMAG / Université Grenoble-Alpes

Mai 2017

1 / 38

Vérimag (Université Grenoble-Alpes, CNRS, Grenoble INP)

PACSS team (Preuve et Analyse de Code pour la Sûreté et la Sécurité)

lead by Marie-Laure Potet and David Monniaux
main research domains :

I Abstract interpretation and decision procedures
I Proofs of correctness using Coq
I Code analysis for security

Code analysis for security (2010-) :

(binary) code analysis for security : vulnerability, exploitability
code robustness to fault injection
application domains :
general purpose and/or open-source software,
certification & common criteria,
IoT & industrial systems (Scada)

2 / 38

Vérimag (Université Grenoble-Alpes, CNRS, Grenoble INP)

PACSS team (Preuve et Analyse de Code pour la Sûreté et la Sécurité)

lead by Marie-Laure Potet and David Monniaux
main research domains :

I Abstract interpretation and decision procedures
I Proofs of correctness using Coq
I Code analysis for security

Code analysis for security (2010-) :

(binary) code analysis for security : vulnerability, exploitability
code robustness to fault injection
application domains :
general purpose and/or open-source software,
certification & common criteria,
IoT & industrial systems (Scada)

3 / 38

Context

Binsec (and other projects : Sertif, Sacade, Aramis, SecureIoT)
Collaborations :
CEA, CESTI, Tiempo, etc.
Cyber Alpes Institute
Securimag ?

4 / 38

Outline

Software Vulnerability Detection and Analysis

Using formal approaches : which challenges ?

Combining Static and Concolic execution for UaF detection

Lightweight runtime reverse engineering of binary code

Conclusion

Software Security
The ability of a SW to correctly operate under malicious attacks

“correctly operate” ?

correctness of security functionalities (crypto, access control, etc.)

control-flow integrity (no crash, no arbitrary code execution)
confidentiality & integrity of the (sensible) code/data

→ mostly what the SW should not do ...

“malicious attacks” ?

attackers = users + execution plateform, knowing :
the target software : code + libraries, vulnerabilities, patches
the execution environment : OS/HW architecture &
protections

→ much beyond “unexpected input/execution conditions”

secure software 6= robust/safe/fault-tolerant software
6 / 38

Software Security
The ability of a SW to correctly operate under malicious attacks

“correctly operate” ?

correctness of security functionalities (crypto, access control, etc.)

control-flow integrity (no crash, no arbitrary code execution)
confidentiality & integrity of the (sensible) code/data

→ mostly what the SW should not do ...

“malicious attacks” ?

attackers = users + execution plateform, knowing :
the target software : code + libraries, vulnerabilities, patches
the execution environment : OS/HW architecture &
protections

→ much beyond “unexpected input/execution conditions”

secure software 6= robust/safe/fault-tolerant software
7 / 38

Software Security
The ability of a SW to correctly operate under malicious attacks

“correctly operate” ?

correctness of security functionalities (crypto, access control, etc.)

control-flow integrity (no crash, no arbitrary code execution)
confidentiality & integrity of the (sensible) code/data

→ mostly what the SW should not do ...

“malicious attacks” ?

attackers = users + execution plateform, knowing :
the target software : code + libraries, vulnerabilities, patches
the execution environment : OS/HW architecture &
protections

→ much beyond “unexpected input/execution conditions”

secure software 6= robust/safe/fault-tolerant software
8 / 38

Security code analysis 6= functional code analysis
Code robustness w.r.t. attacker models

well-defined concrete attack scenarii (e.g., CVEs), attack trees,
etc.
threat quantification (attacker expertise, probability of
triggering a vuln)
formal models of attackers
etc.

Expected outcomes :

→ code security to be evaluated in its execution context . . .
qualification/quantification of the vulnerability assessment
e.g., bug prioritization, rating the attack potentials for certification

produce a PoC or an exploit :
exploitability analysis ; concrete attack example
etc.

9 / 38

Software vulnerabilities
A software bug that could be exploited to gain privileges
on a computer system [Wikipedia]

Several vulnerability classes

Memory safety (buffer overflow, dangling pointer, etc)

Unsecure input handling, improper use of an API, resource leaks

Unsecure use of the OS/HW components (side-channels), etc.

→ Low-level vs high-level vulnerabilities

In practice

Programming Language does mater
(type safety, undefined behaviors, reflection, etc.)

Compiler does matter
(memory layout, optimization level, warning flags, etc.)

OS and HW does matter (cache hierarchy, memory management, etc.)

10 / 38

Looking at the defense side ?

A multi-level protection system . . .

Programming languages
Coding rules and patterns
Compilers
+ contre-mesures fault injections
+ CFI
Operating System
Hardware

11 / 38

But still a major concern . . .

14724 CVE in 2017
I grew 31 % compared to 2016
I one third of them have public exploits

Vulnerability Summary for the Week of March 27, 2017 :
https://www.us-cert.gov/ncas/bulletins/SB17-093

And still a lucrative market . . .
https://zerodium.com/program.html

12 / 38

https://www.us-cert.gov/ncas/bulletins/SB17-093
https://zerodium.com/program.html

Existing approaches for vulnerability detection

Dynamic Analysis
Static analysis
Fuzzing

13 / 38

Fuzzing and dynamic analysis

Dynamic analysis

source/binary code instrumentation for runtime error detection
Valgrind (DBI) and AdSan (CTI)
able to detect most memory safety errors

(stack and heap overflows, use-after-free, memory leaks, etc.)
between 2x and 20x slowdown
(almost) no false positives . . .

Fuzzing

14 / 38

Exploitability analysis

Peu de choses sur exploitabilite ! (ex. AFL)
reverse ? IDA Pro ... (de facto tool), etre compatible ?
qqs papiers, CGC ?

15 / 38

On the academic side

16 / 38

Code example 1 (vulnerability and exploitability)

1 int main (int argc , char *argv [])
2 { char x=0 ;
3 char t1[8] ;
4 int i;
5 for (i=0;i<=atoi(argv [2]);i++)
6 t1[i]= atoi(argv [1]) ;
7 if (x != 0) printf("You win !\n") ;
8 else printf("You loose ...\n") ;
9 return 0 ; }

Variable x is never modified ⇒ expected result = You loose ?

example1 2 7, exemple1 2 11, example1 2 17:
You loose ..., You win ..., non termination

example1 with stack protection:
You loose ..., *** stack smashing detected ***, ***
stack smashing detected ***

17 / 38

Code example 1 (vulnerability and exploitability)

1 int main (int argc , char *argv [])
2 { char x=0 ;
3 char t1[8] ;
4 int i;
5 for (i=0;i<=atoi(argv [2]);i++)
6 t1[i]= atoi(argv [1]) ;
7 if (x != 0) printf("You win !\n") ;
8 else printf("You loose ...\n") ;
9 return 0 ; }

Variable x is never modified ⇒ expected result = You loose ?

example1 2 7, exemple1 2 11, example1 2 17:
You loose ..., You win ..., non termination

example1 with stack protection:
You loose ..., *** stack smashing detected ***, ***
stack smashing detected ***

18 / 38

Code example 1 (vulnerability and exploitability)

1 int main (int argc , char *argv [])
2 { char x=0 ;
3 char t1[8] ;
4 int i;
5 for (i=0;i<=atoi(argv [2]);i++)
6 t1[i]= atoi(argv [1]) ;
7 if (x != 0) printf("You win !\n") ;
8 else printf("You loose ...\n") ;
9 return 0 ; }

Variable x is never modified ⇒ expected result = You loose ?

example1 2 7, exemple1 2 11, example1 2 17:
You loose ..., You win ..., non termination

example1 with stack protection:
You loose ..., *** stack smashing detected ***, ***
stack smashing detected ***

19 / 38

Code exemple 2 : VerifyPIN and fault injection

1 BOOL byteArrayCompare(UBYTE* a1, UBYTE* a2, UBYTE size)
2 {
3 int i; BOOL status = C_FALSE; BOOL diff = C_FALSE;
4 for(i = 0;i<size;i++) if(a1[i]!= a2[i]) diff = C_TRUE;
5 if(i!=size) countermeasure();
6 if (diff== C_FALSE) status=C_TRUE; else status=C_FALSE;
7 return status;
8 }
9

10 BOOL verifyPIN_5 ()
11 {
12 g_authenticated = C_FALSE;
13 if(g_ptc >= 0) { g_ptc --;
14 if(byteArrayCompare(g_userPin ,g_cardPin ,PIN_SIZE)== C_TRUE)
15 if(byteArrayCompare(g_cardPin ,g_userPin ,PIN_SIZE)== C_TRUE)
16 {g_ptc = 3; g_authenticated = C_TRUE; return C_TRUE; }
17 else countermeasure(); }
18 return C_FALSE;
19 }

⇒ code hardened with counter-measures

20 / 38

Analysing the source code is not enough . . .

Binary code, WYSINWYX (→ only the compiler ouptut does matter)

optimisation, protections can disappear
effects of unspecified/undefined behaviours (> 200 cases in C)

memory layout :
stack, heap, exception handler, method tables, etc

whole source code is not available :
library, close-source, obfuscated code, etc.

Combined analyses :

from high-level to binary level, including the compiling process
and execution plateform
countermeasures can be introduced and combined at each level

21 / 38

Binary code analysis

→ A preliminary step : understanding binary code . . .

Disassembling . . .
But undecidable in general ! (key issue = distinguishing code from data)

→ Next steps : static and or dynamic assembly code analysis . . .

22 / 38

Static code analysis (abstract interpretation)
→ abstract semantics to (over-) approximate the code behaviour

Pros :

correctness w.r.t. disassembled code ; no false negatives

scalability

Cons :

how to take into account libraries, interactions with the OS, . . .

difficulty to produce a PoC or an exploit

Difficulties inherent to assembly code :

data structure & CFG recovery (function frames, call/return, etc.)

adapted memory models, uninitialized values (esp, ebp . . .)

Tools : CodeSonar, Veracode, Binsec, Bap, etc.
23 / 38

Dynamic and Concolic Execution (white-box fuzzing)
→ code execution + code instrumentation + symbolic reasonning

Pros :

“only” requires execution and instrumentation facilities
can exhibit vulnerable executions

Cons :

execution time overhead
incompleteness ; false negatives
(input generation to be driven by a guiding strategy or coverage criteria)

Security application :

fuzzing ; crashes ; derive some exploits ?
combination with dynamic checkers (AdSan, Valgrind)

Tools : AFL (fuzzer), SAGE, S2E, AngR, Triton (DSE). . .
24 / 38

Code analysis for security at Vérimag

Software vulnerability detection and analysis

Combination of static and dynamic analyses
Combination of high-level and low level analyses
Counter-measures analysis and attack models

2 main applications :

Software vulnerability detection and analysis
(ANR Binsec 2013-2017, Josselin Feist’s thesis)

Robustness evaluation against fault injections
(ASTRID Sertif 2014-2017, Louis Dureuil’s thesis)

25 / 38

Outline

Software Vulnerability Detection and Analysis

Using formal approaches : which challenges ?

Combining Static and Concolic execution for UaF detection

Lightweight runtime reverse engineering of binary code

Conclusion

Outline

Software Vulnerability Detection and Analysis

Using formal approaches : which challenges ?

Combining Static and Concolic execution for UaF detection

Lightweight runtime reverse engineering of binary code

Conclusion

Use after Free example

1 p=malloc(sizeof(int));
2 p_alias=p; // p and p_alias points
3 // to the same addr
4 read(f,buf ,255); // buf is tainted
5
6 if(strncmp(buf ,"BAD\n" ,4)==0)
7 { free(p); // exit() is missing
8 }
9 else{ .. // some computation

10 }
11
12 if(strncmp (&buf[4],"is a uaf\n" ,9)==0)
13 { p=malloc(sizeof(int)); }
14 else{ p=malloc(sizeof(int));
15 p_alias=p; }
16
17 *p=42 ; // not a uaf
18 *p_alias =43 ; // uaf if 6 and 14 = true

28 / 38

Use after Free example

1 p=malloc(sizeof(int));
2 p_alias=p; // p and p_alias points
3 // to the same addr
4 read(f,buf ,255); // buf is tainted
5
6 if(strncmp(buf ,"BAD\n" ,4)==0)
7 { free(p); // exit() is missing
8 }
9 else{ .. // some computation

10 }
11
12 if(strncmp (&buf[4],"is a uaf\n" ,9)==0)
13 { p=malloc(sizeof(int)); }
14 else{ p=malloc(sizeof(int));
15 p_alias=p; }
16
17 *p=42 ; // not a uaf
18 *p_alias =43 ; // uaf if 6 and 14 = true

29 / 38

Difficult to detect (distant events, reasoning with heap, ..)
No easy "pattern" (like for buffer overflow / string format)
Lots of Use-After-Free in browsers and in other apps
(proftpd CVE-2011-4130, privoxy CVE-2015-1031, openssh...)

Josselin Feist’s thesis approach

Combining adequately static and DSE analyses

Static analysis to extract potential vulnerable paths
Dynamic Symbolic Execution to confirm Use-after-Free
application to real codes (binary pbs + scalability)

30 / 38

Static analyzer : GUEB

Static analysis features

dangerous path discovery : pointer and aliases, inter-procedural
Use-After-Free characterization : 2 heap models

Scalability features

some (unsound) heuristics : loop unrolling and inlining, . . .
a very separated memory model taking into account
uninitialized memory (ebp, esp, . . .)

(Ocaml) Open source : https://github.com/montyly/gueb
31 / 38

https://github.com/montyly/gueb

Resulting slice on Example

1 p=malloc(sizeof(int));
2 p_alias=p; // p and p_alias points
3 // to the same addr
4 read(f,buf ,255); // buf is tainted
5
6 if(strncmp(buf ,"BAD\n" ,4)==0){
7 free(p);
8 // exit() is missing
9 }

10 else{
11 .. // some computation
12 }
13
14 if(strncmp (&buf[4],"is a uaf\n" ,9)

==0){
15 p=malloc(sizeof(int));
16 }
17 else{
18 p=malloc(sizeof(int));
19 p_alias=p;
20 }
21
22 *p=42 ; // not a uaf
23 *p_alias =43 ; // uaf if 6 and 14 =

true

32 / 38

GUEB : Experimentations

Results

Several experiments : UaF detection accuracy (no real existing
benchmark), applicability to real applications (below) ,
scalability (400 binaries).
Several new Use-After-Free and referenced CVE found
(CVE-2015-5221, CVE-2015-8871, CVE-2016-3177)

name #REIL ins time #UAF #EP max size reached
alsabat 99 933 7s 1 10 0
gnome-nettool (-OO) 226 514 16s 4 56 0
gnome-nettool 260 882 17s 7 76 0
gifcolor * 233 303 21s 15 13 0
jasper * 2 154 927 4m23s 255 205 5
accel-ppd 3 907 862 5m5s 35 299 0
openjpeg * 2 170 081 6m10s 329 305 12

33 / 38

Dynamic Symbolic Execution

34 / 38

DSE Features
Exploration strategy

Guided by slices and distance metrics
C/S policies (ISSTA 2016)

A condition to determine real UaF

reinforcing the path predicate Π with the set of constraints :

af = am ∧ au ∈ [am, am + sizealloc − 1] (1)

Data-dependency between af and am and between au and af
(no symbolic value for am violating (1)).

An iterative process to discover a reachable initial state

Obtain a model m = (i , s) from Π, extract constraints C on s
from P(i) and resolve Π ∧ C and so on . . .

35 / 38

Implementation in the BinSec platform + XP
BINSEC/SE

based on the BinSec open source platform offering semantic
binary level analyses : disassembly, simulation, symbolic
execution, static analysis
Our DSE : selection strategies, guiding modules and heuristics
http://binsec.gforge.inria.fr/tools

Jasper (Jasper-JPEG-200 CVE-2015-5221)

20 mins
9 test cases generated, one triggering the Use-After-Free
PoC :

MIF
component

36 / 38

http://binsec.gforge.inria.fr/tools

Experimental validation of our approach
Name Time MIF line UAF found # Paths

DSE (in BINSEC/SE)

WS-Guided+LDH 20m 3min Yes 9

WS-Guided 6h 3min No 44

DFS(slice) 6h 3min No 68

DFS 6h 3min No 354

standard fuzzers (arbitrary seed)

AFL 7h < 1min No 174†

Radamsa 7h > 1h No ∼ 1000000‡

standard fuzzers (MIF seed)
AFL

(MIF input)
< 1min < 1min Yes < 10

Radamsa
(MIF input)

< 1min < 1min Yes < 10

† AFL generates more input, 174 is the number of unique paths.
‡ For radamsa it is not trivial to count the number of unique path.

Table: JasPer evaluation
37 / 38

Combination is fruitful

⇒ An end-to-end approach for vulnerability detection,
with scalability and binary code concerns.

Binary level static analysis

dangerous/vulnerable path discovery concerns
; a set of CFG slices to explore (possibly incomplete)
scalability, but with some unsoud heuristics

Dynamic Symbolic Execution

guided trace exploration towards given CFG slices
C/S policies
dedicated heuristics to speed up the exploration

38 / 38

Outline

Software Vulnerability Detection and Analysis

Using formal approaches : which challenges ?

Combining Static and Concolic execution for UaF detection

Lightweight runtime reverse engineering of binary code

Conclusion

Conclusion

Code analysis for security

reasoning on binary code, with :
I an attacker model
I beyond normal executions (after a crash, on a corrupted code)

→ needs to consider non standard semantics . . .
more than “bug finding”

I exploit generation, qualitative and quantitative assessment
I counter-measure analysis (accuracy and efficiency)

Adaptable tools suit

from high level to low level analyses
adaptable certification process (TEE, IoT, . . .)

40 / 38

Security in Grenoble-Alpes community

SCCyPhy :

Structure the research & education community in computer security
and cryptography :

Design and Analysis of Cryptographic Components (DACC)
Code Protection and Analysis (CAP)
Security and Privacy for Pervasive Systems (SPPS)

Members : Université Grenoble-Alpes, Grenoble INP, INRIA, CEA

Next events :

41 / 38

	Software Vulnerability Detection and Analysis
	Using formal approaches: which challenges ?
	Combining Static and Concolic execution for UaF detection
	Lightweight runtime reverse engineering of binary code
	Conclusion

