CINGULATA

An open-source toolchain for compiling and
running programs over FHE

|Sergiu Carpov>/V2+|Renaud Sirdey>/2
CEA LIST
(based on work with additional people)

May 2018

The FHE dream

« Can Charlie do something useful for
Alice using both Alice and Bob data
but without revealing them (the data)
to him (Charlie) ?

[X]ene=dec([[X]gJrue [SK]pue);

[Y]ene=dec((lylgelpre [SK Teue);
[rTene=f(X]rnes (Y Irme)-

FHE in a nutshell

* On top of allowing to encrypt and decrypt data,
an FHE scheme allows to perform (any)
calculations in the encrypted domain.

— Without access to either intermediate or final
calculations results by the computer.

« Although the first generation of systems were too
costly, practicality has now been achieved for a
first round of (lightweight-enough) applications.

Cryptosystem API:
enc,,:Z, - Q.
dec,, : Q> Z,.
add,, : QxQ—Q.
mul, : QxQ— Q.

where Q is a large cardinality set e.g. Z,n.

Key properties: forallm, € Z,and allm, € Z,
decy(add(enc,(m,),enc,(m,))=m, @ m,).
decg(mul(enc,(m,),enc,,(m,))=m, @ m,.

(and these properties hold long enough...)

The quest for universality

So we ca
circuits.

— l.e. di
W?«.ic;,r\e, « And, b.t. w,, itis also

inputs, QEESTIIERTY
t{e: W\ homomorphically execute
an encrypted Turing

Boolean ¢ .

control st machine.

oblivious . —

Oblivioush Hence, we can in principle
: ensure algorithm privacy.

are Tujgs g P Y,

Hence
everything computable!

FHE performances?

« Somewhat FHE:

— Multiplications have an
increasing cost with the
mutliplicative depth.

— Additions are « free ».

— Large (depth-dep.) overheads.

« Bootstrapped FHE (TFHE):

— Both multiplications and
additions have the same cost,
independently of the depth.

— Smaller (depth-independent)
overheads (8 ko/bit).

ASIACRYPT’16 & ASIACRYPT’17

depth|kb/bitsjms/AND

0 3 -
1 10 4
2 21 8
5 83 28
7 148 66

10 282 150
15 601 376
20 | 1039 680

- HomNOT(c): instantaneous
- HomAND(c1,c2): 13 ms

- HomXOR(c1,c2): 13 ms

- HomMUX(cq,c2,c3): 26 ms

The « strange » FHE computer

No ifs (unless regularized by conditionnal
assignment).

No data dependant loop termination (need
upper bounds and fixed-points).

ér('qe)\g/ dereferencing/assignment in O(n) (vs
Algorithms always realize (at least) their
worst-case complexity!

— Complexity of dichotomic search?

Can handile only a priori (multiplicative)
bounded-depth programs (w/o bootstrapping).

Example: bubble sorting

* Regularization of
the inner if-then-
else using a cond.
assighment
operator.

» Static control
structure hence
systematic worst
case complexity.

— A price to pay for
not leaking any
information.

template<typename integer>
void bsort (integer * const arr,
const int n)

{

assert (n>0) ;

for(int i=0;i<n-1;i++)

{
for (int J=1;j<n-1i;Jj++)
{
integer swap=arr[j-l]>arr[]
integer t=select (swap,arr|[]
arr[Jj-1l]=select (swap,arr[j]
arr[J]=t;
}

}

}

17
-1],arr[3J]);
,arr[J-11);

Where select(c,a,b)=c?a:b.

Array dereferencing and
assignment

 With cleartext indices:
— Straightforward.

« With encrypted indices: =»
— Dereferencing: t[i] = ZX (2,7) X t[j

with x(i,j)=1 if i=j, 0 otherwnse

* l.e, it’s just an == operator.

— Assignment (t[i]:=v) :
tlj] == x(2,7) x v (1 — x(¢, 7)) x t[j], V)

for j=1 to n.
— Hence array assignment and dereferencing are in O(n) (sic

).

« Butit’s the intuitive price for index privacy.

The CINGULATA compiler & RTE...

* A compiler infrastructure for high-level
cryptocomputing-ready programming, taking C++ code
as input.

« Boolean circuit optimization (ABC-based), parallel code
generation and « cryptoexecution » (OpenMP-based)
runtime environment.

« Optimized prototypes of the most efficient FHE systems
known so far.

— Also, with support of open source libs such as HELIB and
(coming soon) TFHE.

import state-of-the-art
cryptosystem libraries

Same algo, but works
on encrypted data

— Software running
User on the server
) Compilation lightweight crypto on
algorlthm toolchain - = uplink, FHE donwlink

o

(C++)

| performance optimizations,]
ASIACCS’1 5’ PST’17 parallelization, sefunty

Software running

on the devices

The CINGULATA compilation

Input
program
analysis

FHE keys
generation

Inputs
encryption

process

Initial
boolean
circuit gen.

FHE
parameter
calculations

Boolean
circuit //-
execution

BLIF

FHE-specific

optimizations

Mult. depth
calculation

Outputs
décryption

FHE-specific optimization

modules o
« Specifically targeted towards . &I.:' u
sFHE. é‘é” v/p/ (&) vy
— « multiplicative depth busting ». - !
- As|as<|econdary objegtive, 5 : oy s : oy
multiplication count decreasing. Ny Y/ X
 Based on the iterative application & @

of local circuit rewriting operators.

* |Interesting results on some real- -

mul s

world algorithms. -
— E.g. multiplicative depth E _//

automatically downed from ~70 .

(prohibitively high) to ~20

. - “72717‘06‘9686‘76‘6656‘46‘26‘1605‘958575‘6555‘45‘3525‘150494‘6474‘64‘5444‘342414‘0393‘357363‘5343‘33‘2313‘02‘9282‘72‘6252‘423
(practically achievable) on RLE.

PST’17, IWOCA’17

Practical achivements

~RAlS Q3 or ¥ B 1512

 Medical diagnostic (various
flavors, various
complexities) — between 3 i

Woudnever ~ Sightchanceof (= Moderi High chance o
© done O Gotng Ofiosng O dosng

[
Watching TV
Secs an mins.

Sitting, inactive in a public place (e.g. theatre or a meeting)

O Wouldnever () Sightchanceaol) Modersechance () High chance of Hello renaud!
dose Going ofdosing doting
#
As a passenger in a car for an hour without a break
‘Would never Sight chance of ~ Moderate chance (~ High chance of 4
O Gose Ofreany O Gfiosmg O doeng o

it
Lying down to rest in the afternoon when circumstances permit
Would never siight chance of () Moderate chance (-~ High chance of
O doze Odtng © Gfioing O dosing

Sitting and talking to someone

¢ Fa ce au th en ti C ati on <4 SeCS o=~ omoummomm Identity verified

Sitting quietly after a lunch without alcohol Request took 3144 ms
‘Would never Shght chance of Moderate chance High chance of
O oo O reay O &fosing O lzng

R l D In a car, while stopped for a few minutes in the traffic
‘Would never Shight chance of Moderate chance High chance of
[} © Gove (O O Giosing O Gotna

SEND YOUR OPTIONS

RESTART AUTHENTICATION

« Genome-based diagnostic <
10 mins.

« Energy-consumption profile
classification <1 secs.

« And a few others...
IEEE Cloud’16, IEEE CloudCom’16, ICISSP’17, SMARTGREENS’18.

IDASH 2017

Secure genome analysis competition.

Learn a logistic regression model over HE encrypted
data.

Batched gradient descent algorithm:
— Straightforward implementation in Cingulata.
— TFHE cryptosystem.

2"d place by AUC score.

History and next steps.

* First open-source release in Dec. 2017.
— Developped mostly during CRYPTOCOMP.

* Next steps (non exhaustive):

— More backends:

« TFHE (gate-bootstraping flavor).
« SEAL.
 TFHE (LUT flavor).

— More optimization modules.

— Longer term : integration of VC techniques in
the compilation process.

O Features Business Explore Marketplace Pricing This repository

[CEA-LIST / Cingulata ®Watch 11 % Star 31

<> Code Issues 0 Pull requests 4 Projects 0 Wiki Insights

Cingulata (pronounced "tchingulata”) is a compiler toolchain and RTE for running C++ programs over encrypted data by mean:
of fully homomorphic encryption techniques.

homomorphic-encza privacy encryption

Go to
b contribut
and ‘v —
happily cryptocompute —
ever after!

NanXiao and sergiu-Carpos - GRC. ’ (@ 4¢
M circuit Cingulata team commits 1st toolchain v utsi P” 5
@ deco Cingulata team commits 1st toolchain version to the out L. 5
B optim Do not use readline lib in ABC compilation 3

B runtime Fix spurious wake.
B tests blif_name defined only once in CMAkelLists.txt, not anymore in filenam... ¢
E) .gitignore Cingulata team commits 1st toolchain version to the outside multivers... 5

[£) CMakelists.txt Cingulata team commits 1st toolchain version to the outside multivers... 5

https://github.com/CEA-LIST/Cingulata

BACKUPS

©OOo0O~NOOPH WN =

The CINGULATA compilation
process

. Input program analysis.
. Initial boolean circuit generation.
. Boolean circuit FHE-specific

optimisation.

. Mult-depth calculation.

. FHE parameters generation.
. FHE keys generation.

. Input encryption.

. Boolean circuit execution.

. Output decryption.

