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The FHE dream

« Can Charlie do something useful for
Alice using both Alice and Bob data
but without revealing them (the data)
to him (Charlie) ?

[X]ene=dec([[X]gJrue [SK]pue);

[Y]ene=dec((lylgelpre [SK Teue);
[rTene=f(X]rnes (Y Irme)-




FHE in a nutshell

* On top of allowing to encrypt and decrypt data,
an FHE scheme allows to perform (any)
calculations in the encrypted domain.

— Without access to either intermediate or final
calculations results by the computer.

« Although the first generation of systems were too
costly, practicality has now been achieved for a
first round of (lightweight-enough) applications.

Cryptosystem API:
enc,,:Z, - Q.
dec,, : Q> Z,.
add,, : QxQ—Q.
mul, : QxQ— Q.

where Q is a large cardinality set e.g. Z,n.

Key properties: forallm, € Z,and allm, € Z,
decy(add(enc,(m,),enc,(m,))=m, @ m,).
decg(mul(enc,(m,),enc,,(m,))=m, @ m,.

(and these properties hold long enough...)




The quest for universality
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FHE performances?

« Somewhat FHE:

— Multiplications have an
increasing cost with the
mutliplicative depth.

— Additions are « free ».

— Large (depth-dep.) overheads.

« Bootstrapped FHE (TFHE):

— Both multiplications and
additions have the same cost,
independently of the depth.

— Smaller (depth-independent)
overheads (8 ko/bit).

ASIACRYPT’16 & ASIACRYPT’17

depth|kb/bitsjms/AND

0 3 -
1 10 4
2 21 8
5 83 28
7 148 66

10 282 150
15 601 376
20 | 1039 680

- HomNOT(c): instantaneous
- HomAND(c1,c2): 13 ms

- HomXOR(c1,c2): 13 ms

- HomMUX(cq,c2,c3): 26 ms




The « strange » FHE computer

No ifs (unless regularized by conditionnal
assignment).

No data dependant loop termination (need
upper bounds and fixed-points).

ér('qe)\g/ dereferencing/assignment in O(n) (vs
Algorithms always realize (at least) their
worst-case complexity!

— Complexity of dichotomic search?

Can handile only a priori (multiplicative)
bounded-depth programs (w/o bootstrapping).



Example: bubble sorting

* Regularization of
the inner if-then-
else using a cond.
assighment
operator.

» Static control
structure hence
systematic worst
case complexity.

— A price to pay for
not leaking any
information.

template<typename integer>
void bsort (integer * const arr,
const int n)

{

assert (n>0) ;

for(int i=0;i<n-1;i++)

{
for (int J=1;j<n-1i;Jj++)
{
integer swap=arr[j-l]>arr[]
integer t=select (swap,arr|[]
arr[Jj-1l]=select (swap,arr[j]
arr[J]=t;
}

}

}

17
-1],arr[3J]);
,arr[J-11);

Where select(c,a,b)=c?a:b.




Array dereferencing and
assignment

 With cleartext indices:
— Straightforward.

« With encrypted indices: =»
— Dereferencing: t[i] = ZX (2,7) X t[j

with x(i,j)=1 if i=j, 0 otherwnse

* l.e, it’s just an == operator.

— Assignment (t[i]:=v) :
tlj] == x(2,7) x v (1 — x(¢, 7)) x t[j], V)

for j=1 to n.
— Hence array assignment and dereferencing are in O(n) (sic

).

« Butit’s the intuitive price for index privacy.



The CINGULATA compiler & RTE...

* A compiler infrastructure for high-level
cryptocomputing-ready programming, taking C++ code
as input.

« Boolean circuit optimization (ABC-based), parallel code
generation and « cryptoexecution » (OpenMP-based)
runtime environment.

« Optimized prototypes of the most efficient FHE systems
known so far.

— Also, with support of open source libs such as HELIB and
(coming soon) TFHE.

import state-of-the-art
cryptosystem libraries

Same algo, but works
on encrypted data

— Software running
User on the server
) Compilation lightweight crypto on
algorlthm toolchain - = uplink, FHE donwlink
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The CINGULATA compilation
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FHE-specific optimization

modules o
« Specifically targeted towards . &I.:' u
sFHE. é‘é” v/p/ (&) vy
— « multiplicative depth busting ». - !
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* |Interesting results on some real- -

mul s

world algorithms. -
— E.g. multiplicative depth E _//
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(practically achievable) on RLE.

PST’17, IWOCA’17



Practical achivements
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« Genome-based diagnostic <
10 mins.

« Energy-consumption profile
classification <1 secs.

« And a few others...
IEEE Cloud’16, IEEE CloudCom’16, ICISSP’17, SMARTGREENS’18.




IDASH 2017

Secure genome analysis competition.

Learn a logistic regression model over HE encrypted
data.

Batched gradient descent algorithm:
— Straightforward implementation in Cingulata.
— TFHE cryptosystem.

2"d place by AUC score.




History and next steps.

* First open-source release in Dec. 2017.
— Developped mostly during CRYPTOCOMP.

* Next steps (non exhaustive):

— More backends:

« TFHE (gate-bootstraping flavor).
« SEAL.
 TFHE (LUT flavor).

— More optimization modules.

— Longer term : integration of VC techniques in
the compilation process.
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Cingulata (pronounced "tchingulata”) is a compiler toolchain and RTE for running C++ programs over encrypted data by mean:
of fully homomorphic encryption techniques.

homomorphic-encza privacy encryption

Go to
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The CINGULATA compilation
process

. Input program analysis.
. Initial boolean circuit generation.
. Boolean circuit FHE-specific

optimisation.

. Mult-depth calculation.

. FHE parameters generation.
. FHE keys generation.

. Input encryption.

. Boolean circuit execution.

. Output decryption.



