
CINGULATA

An open-source toolchain for compiling and
running programs over FHE

|Sergiu Carpov>/√2+|Renaud Sirdey>/√2
CEA LIST

(based on work with additional people)

May 2018

The FHE dream

• Can Charlie do something useful for
Alice using both Alice and Bob data
but without revealing them (the data)
to him (Charlie) ?

[x]sk

[r]FHE
[y]sk’

[x]FHE=dec([[x]sk]FHE,[sk]FHE);
[y]FHE=dec([[y]sk’]FHE,[sk’]FHE);
[r]FHE=f([x]FHE,[y]FHE).

FHE in a nutshell
• On top of allowing to encrypt and decrypt data,

an FHE scheme allows to perform (any)
calculations in the encrypted domain.
– Without access to either intermediate or final

calculations results by the computer.

• Although the first generation of systems were too
costly, practicality has now been achieved for a
first round of (lightweight-enough) applications.

Cryptosystem API:
• encpk : Z2 ! Ω.
• decsk : Ω#! Z2.
• addpk : Ω#x Ω#! Ω.
• mulpk : Ω#x Ω#! Ω.
where Ω#is a large cardinality set e.g. Zqn.
Key properties: for all m1 " Z2 and all m2 " Z2

• decsk(addpk(encpk(m1),encpk(m2))=m1 # m2).
• decsk(mulpk(encpk(m1),encpk(m2))=m1 $ m2.
(and these properties hold long enough…)

The quest for universality
• So we can execute boolean

circuits.
– I.e. directed graphs G=(V,A)

which vertices are either
inputs, outputs or operator
(XOR, AND).

• Boolean circuits = static
control structure programs =
oblivious Turing machines.

• Oblivious Turing machines
are Turing-complete.

• Hence we can compute
everything computable!

• And, b. t. w., it is also
possible to
homomorphically execute
an encrypted Turing
machine.

• Hence, we can in principle
ensure algorithm privacy.

FHE performances?

• Somewhat FHE:
– Multiplications have an

increasing cost with the
mutliplicative depth.

– Additions are « free ».
– Large (depth-dep.) overheads.

• Bootstrapped FHE (TFHE):
– Both multiplications and

additions have the same cost,
independently of the depth.

– Smaller (depth-independent)
overheads (8 ko/bit).

ASIACRYPT’16,&,ASIACRYPT’17

The « strange » FHE computer

• No ifs (unless regularized by conditionnal
assignment).

• No data dependant loop termination (need
upper bounds and fixed-points).

• Array dereferencing/assignment in O(n) (vs
O(1)).

• Algorithms always realize (at least) their
worst-case complexity!
– Complexity of dichotomic search?

• Can handle only a priori (multiplicative)
bounded-depth programs (w/o bootstrapping).

Example: bubble sorting
• Regularization of

the inner if-then-
else using a cond.
assignment
operator.

• Static control
structure hence
systematic worst
case complexity.
– A price to pay for

not leaking any
information.

template<typename integer>
void bsort(integer * const arr,
const int n)

{
assert(n>0);

for(int i=0;i<n-1;i++)
{
for(int j=1;j<n-i;j++)
{
integer swap=arr[j-1]>arr[j];
integer t=select(swap,arr[j-1],arr[j]);
arr[j-1]=select(swap,arr[j],arr[j-1]);
arr[j]=t;
}
}
}

Where select(c,a,b)!c?a:b.

• With cleartext indices:
– Straightforward.

• With encrypted indices:
– Dereferencing:

with χ(i,j)=1 if i=j, 0 otherwise.
• I.e., it’s just an == operator.

– Assignment (t[i]:=v) :

for j=1 to n.
– Hence array assignment and dereferencing are in O(n) (sic

!).
• But it’s the intuitive price for index privacy.

Array dereferencing and
assignment

The CINGULATA compiler & RTE…
• A compiler infrastructure for high-level

cryptocomputing-ready programming, taking C++ code
as input.

• Boolean circuit optimization (ABC-based), parallel code
generation and « cryptoexecution » (OpenMP-based)
runtime environment.

• Optimized prototypes of the most efficient FHE systems
known so far.
– Also, with support of open source libs such as HELIB and

(coming soon) TFHE.

ASIACCS’15,)PST’17

The CINGULATA compilation
process

Input&
program&
analysis

FHE&keys&
generation

Inputs&
encryption

Initial&
boolean

circuit&gen.

FHE&
parameter
calculations

Boolean
circuit&//:
execution

FHE:specific
optimizations

Mult.&depth
calculation

Outputs&
décryption

Bin BLIF

BLIF
TXTXML

sk,&pk,&
evk

*.ct *.ct

=42

C++

FHE-specific optimization
modules

• Specifically targeted towards
sFHE.
– « multiplicative depth busting ».
– As a secondary objective,

multiplication count decreasing.

• Based on the iterative application
of local circuit rewriting operators.

• Interesting results on some real-
world algorithms.
– E.g. multiplicative depth

automatically downed from ~70
(prohibitively high) to ~20
(practically achievable) on RLE.

PST’17,(IWOCA’17

Practical achivements
• Medical diagnostic (various

flavors, various
complexities) – between 3
secs and 2 mins.

• Face authentication <4 secs
RTD.

• Genome-based diagnostic <
10 mins.

• Energy-consumption profile
classification < 1 secs.

• And a few others…
IEEE#Cloud’16,#IEEE#CloudCom’16,#ICISSP’17,#SMARTGREENS’18.

IDASH 2017

• Secure genome analysis competition.
• Learn a logistic regression model over HE encrypted

data.
• Batched gradient descent algorithm:

– Straightforward implementation in Cingulata.
– TFHE cryptosystem.

• 2nd place by AUC score.

History and next steps.

• First open-source release in Dec. 2017.
– Developped mostly during CRYPTOCOMP.

• Next steps (non exhaustive):
– More backends:

• TFHE (gate-bootstraping flavor).
• SEAL.
• TFHE (LUT flavor).

– More optimization modules.
– Longer term : integration of VC techniques in

the compilation process.

Go to
https://github.com/CEA

-LIST/Cingulata and
happily cryptocompute

ever after!

https://github.com/CEA-LIST/Cingulata

BACKUPS

The CINGULATA compilation
process

1. Input program analysis.
2. Initial boolean circuit generation.
3. Boolean circuit FHE-specific

optimisation.
4. Mult-depth calculation.
5. FHE parameters generation.
6. FHE keys generation.
7. Input encryption.
8. Boolean circuit execution.
9. Output decryption.

