
Evolution des attaques sur la micro-architecture

Clémentine Maurice, Chargée de Recherche CNRS, IRISA
31 Mai 2018–Journées Nationales 2018 Pré-GDR Sécurité Informatique



Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly

, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)

2



Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)

2



Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)

2



Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification

attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)

2



Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR) 2



From small optimizations…

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

2017 Kaby Lake

2018 Coffee Lake

• new microarchitectures yearly

• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

3



From small optimizations…

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

2017 Kaby Lake

2018 Coffee Lake

• new microarchitectures yearly
• performance improvement ≈ 5%

• very small optimizations: caches, branch
prediction…

3



From small optimizations…

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

2017 Kaby Lake

2018 Coffee Lake

• new microarchitectures yearly
• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

3



… To microarchitectural side-channel attacks

• microarchitectural side channels come from these optimizations

• several processes are sharing microarchitectural components
• attacker infers information from a victim process via hardware usage
• pure-software attacks by unprivileged processes
• sequences of benign-looking actions → hard to detect

4



… To microarchitectural side-channel attacks

• microarchitectural side channels come from these optimizations
• several processes are sharing microarchitectural components

• attacker infers information from a victim process via hardware usage
• pure-software attacks by unprivileged processes
• sequences of benign-looking actions → hard to detect

4



… To microarchitectural side-channel attacks

• microarchitectural side channels come from these optimizations
• several processes are sharing microarchitectural components
• attacker infers information from a victim process via hardware usage

• pure-software attacks by unprivileged processes
• sequences of benign-looking actions → hard to detect

4



… To microarchitectural side-channel attacks

• microarchitectural side channels come from these optimizations
• several processes are sharing microarchitectural components
• attacker infers information from a victim process via hardware usage
• pure-software attacks by unprivileged processes

• sequences of benign-looking actions → hard to detect

4



… To microarchitectural side-channel attacks

• microarchitectural side channels come from these optimizations
• several processes are sharing microarchitectural components
• attacker infers information from a victim process via hardware usage
• pure-software attacks by unprivileged processes
• sequences of benign-looking actions → hard to detect

4



Outline

Historical recap of past attacks

Recent advances

Future and challenges

5



Outline

Historical recap of past attacks

Recent advances

Future and challenges

5



Outline

Historical recap of past attacks

Recent advances

Future and challenges

5



Historical Recap



From theoretical to practical cache attacks

• first theoretical attack in 1996 by Kocher
• first practical attack on RSA in 2005 by Percival, on AES in 2006 by Osvik et al.
• renewed interest for the field in 2014 after Flush+Reload by Yarom and
Falkner

P. C. Kocher. “Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS, and Other Systems”. In: Crypto’96. 1996.
C. Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.
D. A. Osvik, A. Shamir, and E. Tromer. “Cache Attacks and Countermeasures: the Case of AES”. In: CT-RSA 2006. 2006.
Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.

6



Hyper-threading: Same-core attacks

• threads sharing one core share resources: L1, L2 cache, branch predictor

7



Branch prediction

• conditional branches → taking the branch or not depends on some condition
• the condition has to be evaluated
• instead of stalling the pipeline → speculative execution of one possible path
• branch prediction unit predicts the most likely execution path

• branch target buffer (BTB): cache that stores the target addresses of previously
executed branches

• branch predictor: makes the prediction on the outcome of the branch

8



Branch prediction side channels

• two things can go wrong
1. BTB miss
2. misprediction of the branch

• can be observed by timing penalty or hardware performance counters
• algorithms with secret-dependent path → detect whether specific branches
are taken or not taken

O. Acıiçmez, J.-P. Seifert, and c. K. Koç. “Predicting secret keys via branch prediction”. In: CT-RSA 2007. 2007.

9



Easy solution #1

Possible side channels using

components shared by a core?

Stop sharing a core!

10



Easy solution #1

Possible side channels using

components shared by a core?

Stop sharing a core!

10



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores
• inclusive

11



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private

• last-level cache

• divided in slices
• shared across cores
• inclusive

11



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores
• inclusive

11



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices

• shared across cores
• inclusive

11



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores

• inclusive

11



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores
• inclusive

11



Set-associative caches

0 16 17 25 26 31

Index OffsetAddress

Cache

12



Set-associative caches

0 16 17 25 26 31

Index OffsetAddress

Cache

Cache set

Data loaded in a specific set depending on its address

12



Set-associative caches

0 16 17 25 26 31

Index OffsetAddress

Cache

Cache set

way 0 way 3

Data loaded in a specific set depending on its address

Several ways per set

12



Set-associative caches

0 16 17 25 26 31

Index OffsetAddress

Cache

Cache set

way 0 way 3

Cache line

Data loaded in a specific set depending on its address

Several ways per set

Cache line loaded in a specific way depending on the replacement policy
12



Cache attacks

• caches improve performance

• SRAM is expensive → small caches
• different timings for memory accesses

1. data is cached → cache hit → fast
2. data is not cached → cache miss → slow

• cache attacks leverage this timing difference

13



Cache attacks

• caches improve performance
• SRAM is expensive → small caches

• different timings for memory accesses

1. data is cached → cache hit → fast
2. data is not cached → cache miss → slow

• cache attacks leverage this timing difference

13



Cache attacks

• caches improve performance
• SRAM is expensive → small caches
• different timings for memory accesses

1. data is cached → cache hit → fast
2. data is not cached → cache miss → slow

• cache attacks leverage this timing difference

13



Cache attacks

• caches improve performance
• SRAM is expensive → small caches
• different timings for memory accesses

1. data is cached → cache hit → fast

2. data is not cached → cache miss → slow

• cache attacks leverage this timing difference

13



Cache attacks

• caches improve performance
• SRAM is expensive → small caches
• different timings for memory accesses

1. data is cached → cache hit → fast
2. data is not cached → cache miss → slow

• cache attacks leverage this timing difference

13



Cache attacks

• caches improve performance
• SRAM is expensive → small caches
• different timings for memory accesses

1. data is cached → cache hit → fast
2. data is not cached → cache miss → slow

• cache attacks leverage this timing difference

13



Timing differences

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits

14



Timing differences

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses

14



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

15



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

cached cached

15



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

flushes

Step 2: Attacker flushes the shared cache line

15



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

loads data

Step 3: Victim loads the data
15



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

reloads data

Step 4: Attacker reloads the data 15



Flush+Reload: Applications

• cross-VM side channel attacks on crypto algorithms
• RSA: 96.7% of secret key bits in a single signature
• AES: full key recovery in 30000 dec. (a few seconds)

• Cache Template Attacks: automatically finds information leakage
→ side channel on keystrokes and AES T-tables implementation

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014
B. Gülmezoglu, M. S. Inci, T. Eisenbarth, and B. Sunar. “A Faster and More Realistic Flush+Reload Attack on AES”. In: Constructive Side-Channel

Analysis and Secure Design (COSADE). 2015
D. Gruss, R. Spreitzer, and S. Mangard. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium.

2015
https://github.com/IAIK/cache_template_attacks

16

https://github.com/IAIK/cache_template_attacks


Flush+Reload: Applications

• cross-VM side channel attacks on crypto algorithms
• RSA: 96.7% of secret key bits in a single signature
• AES: full key recovery in 30000 dec. (a few seconds)

• Cache Template Attacks: automatically finds information leakage
→ side channel on keystrokes and AES T-tables implementation

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014
B. Gülmezoglu, M. S. Inci, T. Eisenbarth, and B. Sunar. “A Faster and More Realistic Flush+Reload Attack on AES”. In: Constructive Side-Channel

Analysis and Secure Design (COSADE). 2015
D. Gruss, R. Spreitzer, and S. Mangard. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium.

2015
https://github.com/IAIK/cache_template_attacks

16

https://github.com/IAIK/cache_template_attacks


Flush+Reload: Pros and cons

• fine granularity: 1 cache line (64 Bytes)

• but requires shared memory
→ memory deduplication between VMs

17



Flush+Reload: Pros and cons

• fine granularity: 1 cache line (64 Bytes)
• but requires shared memory

→ memory deduplication between VMs

17



Flush+Reload: Pros and cons

• fine granularity: 1 cache line (64 Bytes)
• but requires shared memory

→ memory deduplication between VMs

17



Easy solution #2

Possible side channels using

memory deduplication?

Disable memory deduplication!

18



Easy solution #2

Possible side channels using

memory deduplication?

Disable memory deduplication!

18



Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

19



Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

19



Inclusive property

L1

L2

LLC

core 0 core 1

inclusion

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

19



Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

19



Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2
• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

19



Inclusive property

L1

L2

LLC

core 0 core 1

eviction

• inclusive LLC: superset of L1 and L2
• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

19



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

20



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

20



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

20



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

20



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

fast acces
s

20



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

slow access

20



Challenges with Prime+Probe

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?

21



Last-level cache addressing

slice 0 slice 1 slice 2 slice 3

H

2

offsetsettagphysical address

30

061735

11

line

22



Last-level cache addressing

• last-level cache → as many slices as cores
• undocumented hash function that maps a physical address to a slice
• designed for performance

Hphysical address
30 bits

slice (o0, ... ,ok−1)
k bitsFor 2k slices:

23



Prime+Probe on recent procesors?

Undocumented function → impossible to target a set

Victim address space Cache Attacker address space

?

?

?

?

→ We reverse-engineered the function!

C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon. “Reverse Engineering Intel Complex Addressing Using Performance Counters”.
In: RAID’15. 2015

24



Prime+Probe on recent procesors?

Undocumented function → impossible to target a set

Victim address space Cache Attacker address space

?

?

?

?

→ We reverse-engineered the function!
C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon. “Reverse Engineering Intel Complex Addressing Using Performance Counters”.

In: RAID’15. 2015

24



Prime+Probe: Applications

• cross-VM side channel attacks on crypto algorithms:
• El Gamal (sliding window): full key recovery in 12 min.

• tracking user behavior in the browser, in JavaScript
• covert channels between virtual machines in the cloud

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P’15. 2015.
Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”.

In: CCS’15. 2015.
C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano, S. Mangard, and K. Römer. “Hello from the Other Side: SSH over Robust Cache Covert

Channels in the Cloud”. In: NDSS’17. to appear. 2017.

25



Easy solution #3

Possible side channels using

components shared by a CPU?

Stop sharing a CPU!?

26



Easy solution #3

Possible side channels using

components shared by a CPU?

Stop sharing a CPU!?

26



Recent Advances



Recent advances

Building practical attacks

27



Covert channels in the cloud

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• literature: stops working with noise on the machine
• solution? “Just use error-correcting codes”

28



Covert channels in the cloud

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• literature: stops working with noise on the machine

• solution? “Just use error-correcting codes”

28



Covert channels in the cloud

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• literature: stops working with noise on the machine
• solution? “Just use error-correcting codes”

28



Why can’t we just use error correcting codes?

1 0 0 1 1 0Sender

1 0 0 1 1 0Receiver

(a) Transmission without errors

1 0 0 1 1 0Sender

1 1 0 1 1 0Receiver

(b) Noise: substitution error

1 0 0 1 1 0Sender

1 0 0 0 0 0 1 1 0Receiver

(c) Sender descheduled: insertions

1 0 0 1 1 0Sender

1 0 0Receiver

(d) Receiver descheduled: deletions

29



Why can’t we just use error correcting codes?

1 0 0 1 1 0Sender

1 0 0 1 1 0Receiver

(a) Transmission without errors

1 0 0 1 1 0Sender

1 1 0 1 1 0Receiver

(b) Noise: substitution error

1 0 0 1 1 0Sender

1 0 0 0 0 0 1 1 0Receiver

(c) Sender descheduled: insertions

1 0 0 1 1 0Sender

1 0 0Receiver

(d) Receiver descheduled: deletions

29



Why can’t we just use error correcting codes?

1 0 0 1 1 0Sender

1 0 0 1 1 0Receiver

(a) Transmission without errors

1 0 0 1 1 0Sender

1 1 0 1 1 0Receiver

(b) Noise: substitution error

1 0 0 1 1 0Sender

1 0 0 0 0 0 1 1 0Receiver

(c) Sender descheduled: insertions

1 0 0 1 1 0Sender

1 0 0Receiver

(d) Receiver descheduled: deletions

29



Why can’t we just use error correcting codes?

1 0 0 1 1 0Sender

1 0 0 1 1 0Receiver

(a) Transmission without errors

1 0 0 1 1 0Sender

1 1 0 1 1 0Receiver

(b) Noise: substitution error

1 0 0 1 1 0Sender

1 0 0 0 0 0 1 1 0Receiver

(c) Sender descheduled: insertions

1 0 0 1 1 0Sender

1 0 0Receiver

(d) Receiver descheduled: deletions

29



Our robust covert channel

• physical layer:
• transmits words as a sequence of ‘0’s and ‘1’s
• deals with synchronization errors

• data-link layer:
• divides data to transmit into packets
• corrects the remaining errors

C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano, S. Mangard, and K. Römer. “Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud”. In: NDSS’17. to appear. 2017

30



Physical layer: Sending ‘0’s and ‘1’s

• sender and receiver agree on one set

• receiver probes the set continuously
• sender transmits ’0’ doing nothing

→ lines of the receiver still in cache → fast access
• sender transmits ’1’ accessing addresses in the set

→ evicts lines of the receiver → slow access

31



Physical layer: Sending ‘0’s and ‘1’s

• sender and receiver agree on one set
• receiver probes the set continuously

• sender transmits ’0’ doing nothing
→ lines of the receiver still in cache → fast access

• sender transmits ’1’ accessing addresses in the set
→ evicts lines of the receiver → slow access

31



Physical layer: Sending ‘0’s and ‘1’s

• sender and receiver agree on one set
• receiver probes the set continuously
• sender transmits ’0’ doing nothing

→ lines of the receiver still in cache → fast access

• sender transmits ’1’ accessing addresses in the set
→ evicts lines of the receiver → slow access

31



Physical layer: Sending ‘0’s and ‘1’s

• sender and receiver agree on one set
• receiver probes the set continuously
• sender transmits ’0’ doing nothing

→ lines of the receiver still in cache → fast access
• sender transmits ’1’ accessing addresses in the set

→ evicts lines of the receiver → slow access

31



Eviction set generation

• need a set of addresses in the same cache set and same slice

• problem: slice number depends on all bits of the physical address

physical address

cache tag
cache set
index

cache line
offset

2MB page offset

xxxx

• we can build a set of addresses in the same cache set and same slice
• without knowing which slice

→ we use a jamming agreement

32



Eviction set generation

• need a set of addresses in the same cache set and same slice
• problem: slice number depends on all bits of the physical address

physical address

cache tag
cache set
index

cache line
offset

2MB page offset

xxxx

• we can build a set of addresses in the same cache set and same slice
• without knowing which slice

→ we use a jamming agreement

32



Eviction set generation

• need a set of addresses in the same cache set and same slice
• problem: slice number depends on all bits of the physical address

physical address

cache tag
cache set
index

cache line
offset

2MB page offset

xxxx

• we can build a set of addresses in the same cache set and same slice

• without knowing which slice
→ we use a jamming agreement

32



Eviction set generation

• need a set of addresses in the same cache set and same slice
• problem: slice number depends on all bits of the physical address

physical address

cache tag
cache set
index

cache line
offset

2MB page offset

xxxx

• we can build a set of addresses in the same cache set and same slice
• without knowing which slice

→ we use a jamming agreement

32



Eviction set generation

• need a set of addresses in the same cache set and same slice
• problem: slice number depends on all bits of the physical address

physical address

cache tag
cache set
index

cache line
offset

2MB page offset

xxxx

• we can build a set of addresses in the same cache set and same slice
• without knowing which slice

→ we use a jamming agreement

32



Sending the first image

33



Handling synchronization errors

• deletion errors: request-to-send scheme that also serves as ack

• 3-bit sequence number
• request: encoded sequence number (7 bits)

• ’0’-insertion errors: error detection code → Berger codes

• appending the number of ’0’s in the word to itself
→ property: a word cannot consist solely of ’0’s

DataPhysical layer word

12 bits

SQN

3 bits

EDC

4 bits

34



Handling synchronization errors

• deletion errors: request-to-send scheme that also serves as ack
• 3-bit sequence number
• request: encoded sequence number (7 bits)

• ’0’-insertion errors: error detection code → Berger codes

• appending the number of ’0’s in the word to itself
→ property: a word cannot consist solely of ’0’s

DataPhysical layer word

12 bits

SQN

3 bits

EDC

4 bits

34



Handling synchronization errors

• deletion errors: request-to-send scheme that also serves as ack
• 3-bit sequence number
• request: encoded sequence number (7 bits)

• ’0’-insertion errors: error detection code → Berger codes
• appending the number of ’0’s in the word to itself

→ property: a word cannot consist solely of ’0’s

DataPhysical layer word

12 bits

SQN

3 bits

EDC

4 bits

34



Synchronization (before)

35



Synchronization (after)

36



Synchronization (after)

36



Synchronization (after)

36



Data-link layer: Error correction

• Reed-Solomon codes to correct the remaining errors

• RS word size = physical layer word size = 12 bits
• packet size = 212− 1= 4095 RS words
• 10% error-correcting code: 409 parity and 3686 data RS words

Data Parity

3686 RS-words 409 RS-words

Data SQN EDC

12 bits 3 bits 4 bits

Data-link layer packet

Physical layer word

37



Data-link layer: Error correction

• Reed-Solomon codes to correct the remaining errors
• RS word size = physical layer word size = 12 bits
• packet size = 212− 1= 4095 RS words
• 10% error-correcting code: 409 parity and 3686 data RS words

Data Parity

3686 RS-words 409 RS-words

Data SQN EDC

12 bits 3 bits 4 bits

Data-link layer packet

Physical layer word

37



Error correction (after)

38



Evaluation

Environment Bit rate Error rate Noise

Native 75.10 KBps 0.00% –

Native 36.03 KBps 0.00% stress -m 1
Amazon EC2 45.25 KBps 0.00% –
Amazon EC2 45.09 KBps 0.00% web server serving files on sender VM
Amazon EC2 42.96 KBps 0.00% stress -m 2 on sender VM
Amazon EC2 42.26 KBps 0.00% stress -m 1 on receiver VM
Amazon EC2 37.42 KBps 0.00% web server on all 3 VMs, stress -m 4 on 3rd

VM, stress -m 1 on sender and receiver VMs
Amazon EC2 34.27 KBps 0.00% stress -m 8 on third VM

39



Evaluation

Environment Bit rate Error rate Noise

Native 75.10 KBps 0.00% –
Native 36.03 KBps 0.00% stress -m 1

Amazon EC2 45.25 KBps 0.00% –
Amazon EC2 45.09 KBps 0.00% web server serving files on sender VM
Amazon EC2 42.96 KBps 0.00% stress -m 2 on sender VM
Amazon EC2 42.26 KBps 0.00% stress -m 1 on receiver VM
Amazon EC2 37.42 KBps 0.00% web server on all 3 VMs, stress -m 4 on 3rd

VM, stress -m 1 on sender and receiver VMs
Amazon EC2 34.27 KBps 0.00% stress -m 8 on third VM

39



Evaluation

Environment Bit rate Error rate Noise

Native 75.10 KBps 0.00% –
Native 36.03 KBps 0.00% stress -m 1
Amazon EC2 45.25 KBps 0.00% –

Amazon EC2 45.09 KBps 0.00% web server serving files on sender VM
Amazon EC2 42.96 KBps 0.00% stress -m 2 on sender VM
Amazon EC2 42.26 KBps 0.00% stress -m 1 on receiver VM
Amazon EC2 37.42 KBps 0.00% web server on all 3 VMs, stress -m 4 on 3rd

VM, stress -m 1 on sender and receiver VMs
Amazon EC2 34.27 KBps 0.00% stress -m 8 on third VM

39



Evaluation

Environment Bit rate Error rate Noise

Native 75.10 KBps 0.00% –
Native 36.03 KBps 0.00% stress -m 1
Amazon EC2 45.25 KBps 0.00% –
Amazon EC2 45.09 KBps 0.00% web server serving files on sender VM
Amazon EC2 42.96 KBps 0.00% stress -m 2 on sender VM
Amazon EC2 42.26 KBps 0.00% stress -m 1 on receiver VM
Amazon EC2 37.42 KBps 0.00% web server on all 3 VMs, stress -m 4 on 3rd

VM, stress -m 1 on sender and receiver VMs
Amazon EC2 34.27 KBps 0.00% stress -m 8 on third VM

39



Building an SSH connection

Hypervisor

Last Level Cache (LLC)

VM 1

Covert Channel

Prime+Probe

TCP↔File

File System

TCP Client
(e.g. ssh)

Socket

VM 2

Covert Channel

Prime+Probe

TCP↔File

File System

TCP Server
(e.g. sshd)

Socket

40



SSH evaluation

Between two instances on Amazon EC2

Noise Connection

No noise 3

stress -m 8 on third VM 3

Web server on third VM 3

Web server on SSH server VM 3

Web server on all VMs 3

stress -m 1 on server side unstable

Telnet also works with occasional corrupted bytes with stress -m 1

41



SSH evaluation

Between two instances on Amazon EC2

Noise Connection

No noise 3

stress -m 8 on third VM 3

Web server on third VM 3

Web server on SSH server VM 3

Web server on all VMs 3

stress -m 1 on server side unstable

Telnet also works with occasional corrupted bytes with stress -m 1

41



Recent advances

Increasing the attack surface

42





Increasing the attack surface

Not just caches: also DRAM, MMU, TLB, GPUs...

• DRAM [Pessl et al., DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks (USENIX
Security 2016)]

• GPU [Frigo et al., Grand Pwning Unit: Accelerating Microarchitectural Attacks with the GPU
(S&P 2018)]

• MMU [Van Schaik et al., Malicious Management Unit: Why Stopping Cache Attacks in Software
is Harder Than You Think (USENIX Security 2018)]

• TLB [Gras et al., Translation Leak-aside Buffer: Defeating Cache Side-channel Protections
with TLB Attacks (USENIX Security 2018)]

44



Increasing the attack surface

Not just native code on x86: mobile and web too

• Oren et al., The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their
Implications (CCS 2015)

• Lipp et al., ARMageddon: Cache Attacks on Mobile Devices (USENIX Security 2016)

• Gras et al., ASLR on the Line: Practical Cache Attacks on the MMU (NDSS 2017)

• Schwarz et al., Fantastic Timers and Where to Find Them: High-Resolution
Microarchitectural Attacks in JavaScript (FC 2017)

• Lipp et al., Practical Keystroke Timing Attacks in Sandboxed JavaScript (ESORICS 2017)

45



Increasing the attack surface

Not just side channels: software fault attacks too

• Kim et al., Flipping Bits in Memory Without Accessing Them: An Experimental Study
of DRAM Disturbance Errors (ISCA 2014)

• Bosman et al., Dedup Est Machina: Memory Deduplication as an Advanced
Exploitation Vector (S&P 2016)

• Gruss et al., Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript
(DIMVA 2016)

• Van der Veen et al., Drammer: Deterministic Rowhammer Attacks on Mobile
Platforms (CCS 2016)

• Tang et al., CLKSCREW: Exposing the Perils of Security-Oblivious Energy Management
(USENIX Security 2017)

46



Future and Challenges



Challenges and questions

• lack of documentation on microarchitectural components
• which components are vulnerable to these attacks?
• which software is vulnerable to these attacks?
• how to prevent attacks based on performance optimizations without
removing performance?

47



Future: Towards remote attacks?

• all past and recent attacks use some code execution (native or JavaScript)
• can we perform attacks without a single attacker-controlled line of code on
the targeted system?

• very recent remote Rowhammer attacks:
• using RDMA [Tatar et al., Throwhammer: Rowhammer Attacks over the Network and
Defenses (USENIX ATC 2018)]

• using uncached memory and quality-of-service techniques [Lipp et al.,
Nethammer: Inducing Rowhammer Faults through Network Requests (arXiv:1805.04956)]

• more to come?

48



Future: More speculative execution side channels?

• Meltdown breaks isolation between applications
and kernel by exploiting Out-of-Order execution

• Spectre mistrains branch prediction to
speculatively execute code that should not be
executed

• 3 initial variants in January, a 4th one on May 21
• more to come?

49



Conclusion

• first paper by Kocher in 1996: 22 years of research in this area
• domain still in expansion: increasing number of papers published since 2015
• adopted countermeasures only target cryptographic implementations
• still a lot more to discover on this iceberg :)
• quick fixes don’t work
• still a lot more work needed to find satisfying countermeasures

50



Thank you!

Contact

 clementine.maurice@irisa.fr
 @BloodyTangerine



Evolution des attaques sur la micro-architecture

Clémentine Maurice, Chargée de Recherche CNRS, IRISA
31 Mai 2018–Journées Nationales 2018 Pré-GDR Sécurité Informatique


	Historical Recap
	Recent Advances
	Future and Challenges

