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1 package Bank;
2
3 public class Account{
4 private int balance = 0;
535
6 public void deposit( int amount ) {
7 this.balance += amount;
8 }
9 }40

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void ( ⇤deposit ) ( struct Account⇤, int ) = deposit_f;
4 } Account;45
5
6 void deposit_f( Account⇤ a, int amount ) {
7 a!balance += amount;
8 return;
9 }50

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the55

size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.
This violation occurs because there is a discrepancy between what abstractions the source

language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful60

abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 65].
In order to withstand the danger posed by exploitable target languages, secure compilation65

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality70

they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker75

contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a
variety of formal statements can capture when a compiler is secure. One such formal criterion that
has been widely adopted for secure compilation is compiler full abstraction [1].
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model malicious attackers that interoperate with the secure software (the hole-�lling component415

P ), possibly mounting attacks such as those described in Section 2.
Contextual equivalence can be used to model security properties of source code, as described by

Theorem 3.4 below, for various examples from Section 2.

Example 3.4 (Security properties via contextual equivalence). The code snippet of Theorem 2.1
described con�dentiality properties. That code is presented alongside a new snippet in Figure 1420

(relevant di�erences in side-by-side snippets are coloured in red). If the two snippets are contex-
tually equivalent, then the value of secret is con�dential to the code. In fact, the two snippets
assign di�erent values to secret, so if they are contextually equivalent, then secret must not be
discernible by external code.

1 private secret : Int = 0;
2
3 public setSecret( ) : Int {
4 secret = 0;
5 return 0;
6 }

1 private secret : Int = 0;
2
3 public setSecret( ) : Int {
4 secret = 1;
5 return 0;
6 }

Fig. 1. These code snippets express confidentiality properties.

The code snippet of Theorem 2.2 described integrity properties. Figure 2 presents that code425

alongside other code that checks whether the variable secret has been modi�ed during the
callback. Since secret is allocated on the stack, returning from function proxy will erase it; if it
were allocated globally, its integrity would need to be checked at each lookup of its value. If these
code snippets are contextually equivalent, then secret cannot be modi�ed during the callback.

1 public proxy( callback : Unit ! Unit )
: Int {

2 var secret = 0;
3 callback();
4 if ( secret == 0 ) {
5 return 0;
6 }
7 return 1;
8 }

1 public proxy( callback : Unit ! Unit )
: Int {

2 var secret = 0;
3 callback();
4
5 return 0;
6
7
8 }

Fig. 2. These code snippets express integrity properties.

The code snippet of Theorem 2.3 described memory size properties. Figure 3 presents that code430

alongside other code that does not allocate n new Objects. In Theorem 2.3, external code could
disrupt the execution �ow by over�owing the memory. If these code snippets are contextually
equivalent, then the memory size does not a�ect the computation.
The code snippet of Theorem 2.4 describes memory allocation properties. Figure 4 presents

that code alongside other code that returns the second allocated object instead of the �rst one. If435

these code snippets are contextually equivalent, then the memory allocation order is invisible to an
attacker, as she is unable to distinguish between objects based on their allocation order.

3.1.1 Discussion. Contextual equivalence shows its limitations both in the attacks it can express
and complexity it introduces in proofs. Timing attacks or, more generally, side-channels attacks
cannot be expressed with contextual equivalence. Thus, these attacks are generally disregarded by440
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Example 2.1 (Con�dentiality of values [9]). Consider the Java-like code below, where function
setSecret sets the �eld secret to 1 and then returns 0.

1 private secret : Int = 0;
2175
3 public setSecret() : Int {
4 secret = 1;
5 return 0;
6 }180

The �eld secret is used to store con�dential data (it is private) and it is inaccessible from other
source-level code, so a target-level attacker should not be able to retrieve its value. If this code
gets compiled to a language where memory locations are identi�ed by natural numbers (e.g., an
untyped assembly language or �µ-hashref [59]), then the address where secret is stored can be
read by attackers. By dereferencing the number associated with the location of secret, attackers185

can violate the intended con�dentiality property of the code.

Example 2.2 (Integrity of values [9]). Analogous to Theorem 2.1, function proxy below sets the
variable secret to 1, and then calls the function callback, that was passed in as a parameter.

1 public proxy( callback : Unit ! Unit ) : Int {190
2 var secret = 1;
3 callback();
4 return 0;
5 }195

The variable secret is inaccessible to the code in the callback function at the source level. However,
if this code is compiled to a target language that can manipulate the call stack, it can access the
secret variable and change its value. Similarly, malicious target-level code can manipulate the
return address stored on the stack, altering the expected �ow of computation.

Example 2.3 (Finite memory size [59]). When dealing with memory, its size can also a�ect the200

behaviour of a component, however the memory size is often not a concern of source languages.
Consider a source language with a dynamic memory allocation operation new. Function kernel
below allocates n new Objects, calls a function callback and executes security-relevant code before
returning 0.

205
1 public kernel( n : Int, callback : Unit !Unit ) : Int {
2 for (i = 0 to n){
3 new Object();
4 }
5 callback();210
6 // security-relevant code
7 return 0;
8 }

At the source level, the security-relevant code will always be executed. However, if this code is215

compiled to a language that limits its memory to contain only n Objects, code execution can be
disrupted during the callback. If the callback allocates another object, the security-relevant code
will not be executed.

Example 2.4 (Deterministic memory allocation [59]). Dynamic memory allocation is a feature
that leads to complications, as illustrated in the code below. In this example, the code allocates two220

Objects, and then returns the �rst one.
1 public newObjects( ) : Object {
2 var x = new Object();
3 var y = new Object();225
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1 public kernel( n : Int, callback : Unit
! Unit ) : Int {

2 for (Int i = 0; i < n; i++){
3 new Object();
4 }
5 callback();
6 // security-relevant code
7 return 0;
8 }

1 public kernel( n : Int, callback : Unit
! Unit ) : Int {

2
3
4
5 callback();
6 // security-relevant code
7 return 0;
8 }

Fig. 3. These code snippets express unbounded memory size properties.

1 public newObjects( ) : Object {
2 var x = new Object();
3 var y = new Object();
4 return x;
5 }

1 public newObjects( ) : Object {
2 var x = new Object();
3 var y = new Object();
4 return y;
5 }

Fig. 4. These code snippets express memory allocation properties.

secure compilation techniques; they can be countered using orthogonal protection mechanisms
which are beyond the scope of this survey. This is interesting future work that is discussed in
Section 6.
Moreover, although other de�nitions of contextual equivalence exist (for example, Curien [32]

uses reduction to the same value instead of divergence), no alternative formulation drops the uni-445

versal quanti�cation on contexts. Reasoning (and proving properties) about contexts is notoriously
complex [16, 50, 59, 95]. To compensate for this di�culty, di�erent forms of equivalence can be
used, e.g., trace semantics [60, 62, 96, 98], weak bisimulation [108], applicative bisimilarity [10]
and logical relations [14], but only if they are proved to be as precise as contextual equivalence.
These equivalences are described in Appendix A. Given an equivalence ⇡, if ⇡ is correct (it does450

not capture additional cases) and complete (it captures all equivalent cases) w.r.t. 'ctx, then it
can be used in place of 'ctx.3 In fact, many proofs of compiler full abstraction rely on a program
equivalence that is as precise as contextual equivalence to be carried out.

Having presented how to formalise security properties as program equivalence, we next discuss
how to de�ne compiler properties that preserve such security properties.455

4 A SPECTRUM OF COMPILER PROPERTIES
This section presents the three main kinds of compiler properties that have been frequently studied
in the literature. The three properties are: (1) that compilation is type-preserving (Section 4.1), which
establishes that a compiler from a typed source language to a typed target transforms well-typed
source terms into well-typed target terms; (2) that compilation is semantics-preserving (informally
known as compiler correctness, Section 4.2), which establishes that a compiler generates a target460

program with the same observable behaviour as the source program; and (3) that compilation
is equivalence-preserving (Section 4.3), which establishes that the compiler translates programs
that are equivalent in the source language—e.g., contextually equivalent or indistinguishable to an
observer at a given security level—into programs that are similarly equivalent in the target language.
Each of these properties is pertinent to secure compilation. Equivalence-preservation is the most465

3 In this case, ⇡ is said to be fully-abstract, but we drop this terminology to avoid confusion with fully-abstract compilation.
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This Talk ...    

1.  Preserving security properties expressed as 
some form of equivalence

- contextual equivalence
  (different for C, ML, Gallina, DSLs)
- observer-sensitive equivalence 

(e.g., noninterference in security-typed languages)
- timing/resource-sensitive equivalence
  (e.g., security of constant-time code)



This Talk ...   

2.  Different compilation targets and threat models
- is the target language typed or untyped?
- what observations can the attacker make?

3.  Different ways of enforcing secure compilation 
- static checking
- dynamic checking (e.g., runtime monitoring, 
cryptographic & hardware enforcement)

4. Proof techniques
- "back-translating" target attackers to source

1.  Preserving security by preserving equivalence



Fully Abstract Compilation

Preserve and reflect contextual equivalence

e1 e2

e1 e2
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Fully Abstract Compilation

Preserve contextual equivalence

Guarantees that     will remain as 
secure as     when executed in 
arbitrary target-level contexts
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e a

i.e. target contexts (attackers    ) can 
make no more observations about      
than a source context can make about 
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Ensuring Full Abstr. / Secure Comp.

   

a
a

source

target

es

et

1. Add target features to the source language.
2. Dynamics checks: catch badly behaved code in the act.

3. Static checks: rule our badly behaved code in the first place

 Bad!
Performance cost

Verification



Type-Preserving Compilation
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Type-Preserving Secure Compilation

Preserve well-typedness & equivalence

e1 e2

e1 e2
e : � � e : �+
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Type-Preserving Compilation
e : � � e : �+e

• System F to Typed Assembly Language                  
[Morrisett et al. POPL’97, TOPLAS'98]

• Typed compilation of Featherweight Java to F-omega, 
private fields to existential type [League et al.  TOPLAS'02]

• FINE (F# with refinement & affine types) to DCIL 
(dependent CIL) [Chen et al. PLDI’10]

• Security-type-preserving compilation from WHILE lang. to 
stack-based TAL (both languages satisfy noninterference).  
Extended to concurrent setting with thread creation, 
secure scheduler [Barthe et al. 2007, 2010]



Type-Preserving Secure Compilation

Preserve well-typedness & equivalence

e1 e2

e1 e2
e : � � e : �+

e : � � e : �+



Challenge: Proving Full Abstraction

Suppose � � e1 : � � e1 and � � e2 : � � e2.

�+ � e1 �ctx
T e2 : �+

� � e1 �ctx
S e2 : �
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Challenge: Proving Full Abstraction

Suppose � � e1 : � � e1 and � � e2 : � � e2.

�+ � e1 �ctx
T e2 : �+

� � e1 �ctx
S e2 : �

e1

e1

e2

e2

Given:  
No       can 
distinguish  

Show:  
Given arbitrary       ,
it cannot distinguish

Need to be able to 
“back-translate”       
to an equivalent 

CT

CT

CS

e1, e2

CS
e1, e2

e1 e2



Challenge: Back-translation
1. If target is not more expressive than source, use the same 

language: back-translation can be avoided in lieu of 
wrappers between     and

• Closure conversion: System F with recursive types 
[Ahmed-Blume ICFP’08]

• f* (STLC with refs, exceptions) to js* (encoding of 
JavaScript in f*) [Fournet et al. POPL’13]

τ τ+



Challenge: Back-translation
2. If target is more expressive than source

(a) Both terminating:  use back-translation by partial 
evaluation 

• Equivalence-preserving CPS from STLC to System F 
[Ahmed-Blume ICFP’11]

• Noninterference for Free (DCC to F   )               
[Bowman-Ahmed ICFP’15]

(b) Both nonterminating: use ??                                   
back-trans by partial evaluation is not well-founded!

ω

Observation:  if source lang. has recursive types,           
can write interpreter for target lang. in source lang.



Fully Abstract Closure Conversion
Source: STLC +    types

Target: System F +    types +    types + exceptions

First full abstraction result where target has exceptions but 
source does not.  

Earlier work, due to lack of sufficiently powerful back-
translation techniques, added target features to source.

Proof technique: Universal Embedding
• Untyped embedding of target in source

• Mediate between strongly typed source and untyped       
back-translation

∃
µ

µ

[New et al. ICFP’16]



Fully Abstract Closure Conversion

∃
µ

µ

[New et al. ICFP’16]Source: STLC +    types

Target: System F +    types +    types + exceptions∃
µ

µ

Value Types ⌧ ::= ↵ | ⌧1 + ⌧2 | h⌧i | 8[↵]. ⌧ ! ✓ | µ↵. ⌧ | 0 | 9↵. ⌧

Computation Types ✓ ::= E ⌧1 ⌧2

Values v ::= x | inj1 v1 | inj2 v2 | hvi | �[↵](x : ⌧). e | foldµ↵.⌧ v | pack (⌧ ,v)

Results r ::= return v | raise v

Computations e ::= r | casev of x1. e1 | x2. e2 | v.i | v1 [⌧ ] v2 | unfoldv |

unpack (↵,x) = v in e | handle e with (x. e1) (y. e2)

Evaluation Contexts K ::= [·] | handle Kwith (x. e1) (y. e2)

e 7�! e0 · · ·

K[(�[↵](x : ⌧). e) [⌧ 0] v] 7�! K[e[⌧ 0/↵][v/x]]

K[unpack (↵,x) = (pack (⌧ ,v)) in e] 7�! K[e[⌧/↵][v/x]]

K[handle (return v)with (x. e1) (y. e2)] 7�! K[e1[v/x]]

K[handle (raise v)with (x. e1) (y. e2)] 7�! K[e2[v/y]]

� ` ⌧

· · ·
↵ 2 �

� ` ↵

�,↵ ` ⌧ �,↵ ` ✓

� ` 8[↵]. ⌧ ! ✓

�,↵ ` ⌧

� ` µ↵. ⌧

�,↵ ` ⌧

� ` 9↵. ⌧

�;� ` v : ⌧

· · ·
�;� ` vi : ⌧ i

�;� ` hvi : h⌧i
� ` � ↵;x : ⌧ ` e : ✓

�;� ` �[↵](x : ⌧). e : 8[↵]. ⌧ ! ✓

�;� ` v : ⌧ [⌧ 0/↵] � ` ⌧ 0

�;� ` pack (⌧ 0,v) : 9↵. ⌧

�;� ` e : ✓

· · ·
�;� ` v : ⌧ � ` ⌧exn

�;� ` return v : E ⌧exn ⌧

�;� ` v : ⌧exn � ` ⌧

�;� ` raise v : E ⌧exn ⌧

�;� ` v : 9↵. ⌧ �,↵;�,x : ⌧ ` e : E ⌧exn ⌧ 0
� ` ⌧ 0

� ` ⌧exn

�;� ` unpack (↵,x) = v in e : E ⌧exn ⌧ 0

�;� ` e : E ⌧ 0
exn ⌧ 0 �;�,x : ⌧ 0

` e1 : E ⌧exn ⌧ �;�,y : ⌧ 0
exn ` e2 : E ⌧exn ⌧

�;� ` handle e with (x. e1) (y. e2) : E ⌧exn ⌧

Figure 2. �T: Syntax + Semantics (excerpts)

� ` v : � ;v v

· · ·
x : � 2 �

� ` x : � ;v x

(y1, . . . , yn) = fv(�(x :�0). e) � ` yi : �i ⌧env = h�1
+, . . . ,�n

+i �, x : � ` e : �0 ;e e

� ` �(x :�). e : �! �0 ;v pack (⌧env, h�(z : h⌧env,�
+i).

let xenv = return z.1 in
let yi = return xenv.i in
· · ·

let x = return z.2 in e

, hy1, . . . ,ynii)

� ` e : � ;e e

· · ·
� ` v : � ;v v

� ` v : � ;e return v

� ` v1 : �1 ! �2 ;v v1 � ` v2 : �1 ;v v2

� ` v1 v2 : �2 ;e unpack (↵, z) = v1 in
let y1 = return z.1 in
let y2 = return z.2 in
y1 hy2,v2i

� ` e1 : �1 ;e e1 �, x : �1 ` e2 : �2 ;e e2

� ` let x= e1 in e2 : �2 ;e let x = e1 in e2

Figure 3. Closure Conversion: Term Translation (excerpts)

exception, a context can distinguish these terms. The context
catch y = ([·] (�x. raise x)) in y returns true when given e1 and
false when given e2. We use our checked exception type to ensure
an exception cannot propagate into source code.

Our closure conversion pass extends the typed closure conversion
in Minamide et al. [26] to accommodate our modal type system.
Figure 4 presents the type translation which is split into the value
type translation �+ and computation type translation �÷. A value
of type � is translated to a value of some value type ⌧ = �+. Non-
trivial expressions of type � are translated to some computation type
✓ = �÷, where �÷ = E0�+, indicating that if this computation
terminates it will result in a value of type �+. The value type
translation �+ is defined by structural recursion in all cases except
for functions. A function of type �1 ! �2 is compiled to a closure,
i.e., a pair of the function and its environment: 9↵. h(h↵,�1

+i!
�2

÷),↵i. The type of the environment is existentially quantified so
that functions of the same type but with different environments

are translated to functions of the same type. Parametricity of
the language ensures that (standard) typed closure conversion
is equivalence preserving. The existential types ensures that the
function component of a closure can only ever be called with the
environment it is packaged with, and ensures the environment can
only be used as an argument to the function it is pacakged with.
Furthermore the output type of the function is �2

÷ = E0�2
+,

guaranteeing that when the function is called, it does not raise an
exception. Viewed instead as a restriction on target programs, this
means a target context cannot pass a closure that raises uncaught
exceptions to compiled source code. Thus, target contexts cannot
use exceptions to make additional observations.

The term translation is given in Figure 3. We define a value
translation � ` v : � ;v v and an expression translation � ` e :
� ;e e. Note that since we translate open terms, we translate a free
variable x to x—the same variable name but in the target language. In
the expression translation, we translate values by first translating the

C =

Idea:  use modal type system at target to rule out linking 
with code that throws unhandled exceptions

C[e1] ⇓ true C[e2] ⇓ false

2. Closure Conversion
Our source and target languages are both call-by-value. They are
also in monadic normal form—constructors and eliminators are
only applied to syntactic values [10]—meant to represent compiler
intermediate languages.

Types � ::= ↵ | 1 | �1 + �2 | �1 ⇥ �2 | �1 ! �2 | µ↵.�

Values v ::= x | hi | inji v | hv1, v2i | �(x :�). e | foldµ↵.� v

Expressions e ::= v | case v of x1. e1 | x2. e2 | ⇡i v | v1 v2 |

unfold v | let x= e1 in e2
Eval. Contexts K ::= [·] | let x= K in e2
General Contexts C ::= [·] | case C of x1. e1 | x2. e2

case e of x1.C | x2. e2
case e of x1. e1 | x2.C
⇡i C | �(x :�).C | · · ·

e 7�! e0
· · ·

K[(�(x :�). e) v] 7�! K[e[v/x]]

K[unfold (foldµ↵.� v)] 7�! K[v]

� ` e : �

· · ·
x : � 2 � · ` �

� ` x : �

�, x : �1 ` e : �2

� ` �(x :�1). e : �1 ! �2

� ` v : �[µ↵.�/↵]

� ` foldµ↵.� v : µ↵.�

� ` v : µ↵.�

� ` unfold v : �[µ↵.�/↵]

Figure 1. �S: Syntax + Semantics (excerpts)

Source Language Our source language �S is a simply-typed
lambda calculus with unit, sums, pairs, and recursive types. Figure 1
presents the syntax and excerpts of the semantics. We present the
dynamic semantics (e 7�! e0) using evaluation contexts K [15]
to define a standard left-to-right call-by-value semantics. Since
our language is in a normal form, the only non-trivial evaluation
contexts are let-bindings. We elide most of the reduction rules and
typing rules (� ` e : �) as they are completely standard. The typing
environment � maps term variables x to their types �.

Figure 1 also presents an excerpt of the syntax for general
contexts which are expressions with a single hole in them. We
omit some of the details caused by the monadic syntax; for instance,
some contexts can only be plugged with values. Context typing
(` C : (� ` �) ) (�0 ` �0)), ensures that for any expression e such
that � ` e : �, we can conclude that �0 ` C[e] : �0.

We define contextual equivalence (� ` e1 ⇡
ctx
S e2 : �) for �S

as follows. Informally, two components e1 and e2 are contextually
equivalent if either can be replaced by the other in any appropriately
typed program context C without affecting the program’s observable
behavior. As it is a simple, functional language, we take termination
(written e +) as our notion of observable behavior. We write e1 m e2
when e1 + if and only if e2 +.

Definition 2.1 (�S Contextual Equivalence)
� ` e1 ⇡

ctx
S e2 : �

def
= � ` e1 : � ^ � ` e2 : � ^

8�0,C. ` C : (� ` �) ) (· ` �0) =) (C[e1] m C[e2])

Target Language Our target language �T is a polymorphic �-
calculus with the empty type, sums, n-ary tuples, existential types,
recursive types, and exceptions tracked by a modal type system.
Figure 2 presents the syntax and excerpts of the dynamic and static
semantics.

The target language has three syntactic categories for terms: v is
a value, e is a computation that may have effects and r is a result,
i.e. a normalized computation: either a returned value return v or
a raised exception raise v.

The let-form of the �S is subsumed in �T by a combined let and
try-catch form called handle in the style of Benton and Kennedy [9].
On a successful computation, i.e., a return, it continues with the
left branch:

handle return v with (x. e1) (y. e2) 7�! e1[v/x]

On an exception it continues with the right branch:
handle raise v with (x. e1) (y. e2) 7�! e2[v/y]

We define let-forms as syntactic sugar for a handle that imme-
diately re-raises any exception it encounters. We similarly define a
more traditional try-catch by doing the opposite:

let x = e in e0
def
= handle e with (x. e0) (y. raise y)

catch y = e in e0
def
= handle e with (x. return x) (y. e0)

We use a modal type system to track exceptions: ⌧ is a value
type (for values v) and ✓ is a computation type (for computations e).
If e has type ✓ = E ⌧exn ⌧ then type soundness for this language
means that if e reduces to a normal form it will either be a return v
where v has type ⌧ , or a raise v0 where v0 has type ⌧exn. Crucially
for our compiler, we can use the empty type 0 as the exception type
to enforce that a computation does not throw an exception.

Context typing and contextual equivalence are defined analo-
gously to �S.

�÷ = E0�+

↵+ = ↵
1+ = hi

(�1 + �2)
+ = �1

+ + �2
+

(�1 ⇥ �2)
+ = h�1

+,�2
+i

(�1 ! �2)
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Definition 2.2 (�T Contextual Equivalence)
�;� ` e1 ⇡

ctx
T e2 : ✓

def
= �;� ` e1 : ✓ ^ �;� ` e2 : ✓ ^

8✓0,C. ` C : (�;� ` ✓) ) (·; · ` ✓0) =) (C[e1] m C[e2])

Closure Conversion Closure conversion is a standard internal
compiler pass translating a substitution-based language into one
that can be implemented with all values being passed by specified
registers or memory locations. The pass translates functions with
references to free variables, i.e. variables from the local environment,
to be closed so that all variables references are bound by the
functions parameters. We collect the values of free variables used
in a function definition into a closure environment that is stored
with the function, where the function itself is modified to take the
environment as an additional input. We face two challenges in typing
this translation to ensure full abstraction.

First, different terms of the same function type may have differ-
ently typed closure environments. To see why, consider two func-
tions e1 = �x. x and e2 = �x. z of type bool ! bool, where z is a
free variable of type bool. The function part of the translation of
e1 would have type hhi, booli ! bool while the translation of e2
would have type hhbooli, booli ! bool. Furthermore, there is no
way to access the closure environment in the source language, so
if the interface to the environment is too liberal then equivalence
can’t possibly be preserved. Both of these problems are solved in
Minamide et al. [26] by using existential types to hide the type of
the environment, as described below.

Second, to preserve equivalence when compiling to a target lan-
guage with exceptions, we must ensure target contexts cannot use
exceptions to make additional observations of translated terms. Con-
sider e1 = �f. (f true; f false; hi) and e2 = �f. (f false; f true; hi).
In a language with just non-termination, these terms are con-
textually equivalent. However, if the argument f can raise an

2. Closure Conversion
Our source and target languages are both call-by-value. They are
also in monadic normal form—constructors and eliminators are
only applied to syntactic values [10]—meant to represent compiler
intermediate languages.

Types � ::= ↵ | 1 | �1 + �2 | �1 ⇥ �2 | �1 ! �2 | µ↵.�

Values v ::= x | hi | inji v | hv1, v2i | �(x :�). e | foldµ↵.� v

Expressions e ::= v | case v of x1. e1 | x2. e2 | ⇡i v | v1 v2 |

unfold v | let x= e1 in e2
Eval. Contexts K ::= [·] | let x= K in e2
General Contexts C ::= [·] | case C of x1. e1 | x2. e2

case e of x1.C | x2. e2
case e of x1. e1 | x2.C
⇡i C | �(x :�).C | · · ·

e 7�! e0
· · ·

K[(�(x :�). e) v] 7�! K[e[v/x]]

K[unfold (foldµ↵.� v)] 7�! K[v]

� ` e : �

· · ·
x : � 2 � · ` �

� ` x : �

�, x : �1 ` e : �2

� ` �(x :�1). e : �1 ! �2

� ` v : �[µ↵.�/↵]

� ` foldµ↵.� v : µ↵.�

� ` v : µ↵.�

� ` unfold v : �[µ↵.�/↵]

Figure 1. �S: Syntax + Semantics (excerpts)

Source Language Our source language �S is a simply-typed
lambda calculus with unit, sums, pairs, and recursive types. Figure 1
presents the syntax and excerpts of the semantics. We present the
dynamic semantics (e 7�! e0) using evaluation contexts K [15]
to define a standard left-to-right call-by-value semantics. Since
our language is in a normal form, the only non-trivial evaluation
contexts are let-bindings. We elide most of the reduction rules and
typing rules (� ` e : �) as they are completely standard. The typing
environment � maps term variables x to their types �.

Figure 1 also presents an excerpt of the syntax for general
contexts which are expressions with a single hole in them. We
omit some of the details caused by the monadic syntax; for instance,
some contexts can only be plugged with values. Context typing
(` C : (� ` �) ) (�0 ` �0)), ensures that for any expression e such
that � ` e : �, we can conclude that �0 ` C[e] : �0.

We define contextual equivalence (� ` e1 ⇡
ctx
S e2 : �) for �S

as follows. Informally, two components e1 and e2 are contextually
equivalent if either can be replaced by the other in any appropriately
typed program context C without affecting the program’s observable
behavior. As it is a simple, functional language, we take termination
(written e +) as our notion of observable behavior. We write e1 m e2
when e1 + if and only if e2 +.

Definition 2.1 (�S Contextual Equivalence)
� ` e1 ⇡

ctx
S e2 : �

def
= � ` e1 : � ^ � ` e2 : � ^

8�0,C. ` C : (� ` �) ) (· ` �0) =) (C[e1] m C[e2])

Target Language Our target language �T is a polymorphic �-
calculus with the empty type, sums, n-ary tuples, existential types,
recursive types, and exceptions tracked by a modal type system.
Figure 2 presents the syntax and excerpts of the dynamic and static
semantics.

The target language has three syntactic categories for terms: v is
a value, e is a computation that may have effects and r is a result,
i.e. a normalized computation: either a returned value return v or
a raised exception raise v.

The let-form of the �S is subsumed in �T by a combined let and
try-catch form called handle in the style of Benton and Kennedy [9].
On a successful computation, i.e., a return, it continues with the
left branch:

handle return v with (x. e1) (y. e2) 7�! e1[v/x]

On an exception it continues with the right branch:
handle raise v with (x. e1) (y. e2) 7�! e2[v/y]

We define let-forms as syntactic sugar for a handle that imme-
diately re-raises any exception it encounters. We similarly define a
more traditional try-catch by doing the opposite:

let x = e in e0
def
= handle e with (x. e0) (y. raise y)

catch y = e in e0
def
= handle e with (x. return x) (y. e0)

We use a modal type system to track exceptions: ⌧ is a value
type (for values v) and ✓ is a computation type (for computations e).
If e has type ✓ = E ⌧exn ⌧ then type soundness for this language
means that if e reduces to a normal form it will either be a return v
where v has type ⌧ , or a raise v0 where v0 has type ⌧exn. Crucially
for our compiler, we can use the empty type 0 as the exception type
to enforce that a computation does not throw an exception.

Context typing and contextual equivalence are defined analo-
gously to �S.
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Definition 2.2 (�T Contextual Equivalence)
�;� ` e1 ⇡

ctx
T e2 : ✓

def
= �;� ` e1 : ✓ ^ �;� ` e2 : ✓ ^

8✓0,C. ` C : (�;� ` ✓) ) (·; · ` ✓0) =) (C[e1] m C[e2])

Closure Conversion Closure conversion is a standard internal
compiler pass translating a substitution-based language into one
that can be implemented with all values being passed by specified
registers or memory locations. The pass translates functions with
references to free variables, i.e. variables from the local environment,
to be closed so that all variables references are bound by the
functions parameters. We collect the values of free variables used
in a function definition into a closure environment that is stored
with the function, where the function itself is modified to take the
environment as an additional input. We face two challenges in typing
this translation to ensure full abstraction.

First, different terms of the same function type may have differ-
ently typed closure environments. To see why, consider two func-
tions e1 = �x. x and e2 = �x. z of type bool ! bool, where z is a
free variable of type bool. The function part of the translation of
e1 would have type hhi, booli ! bool while the translation of e2
would have type hhbooli, booli ! bool. Furthermore, there is no
way to access the closure environment in the source language, so
if the interface to the environment is too liberal then equivalence
can’t possibly be preserved. Both of these problems are solved in
Minamide et al. [26] by using existential types to hide the type of
the environment, as described below.

Second, to preserve equivalence when compiling to a target lan-
guage with exceptions, we must ensure target contexts cannot use
exceptions to make additional observations of translated terms. Con-
sider e1 = �f. (f true; f false; hi) and e2 = �f. (f false; f true; hi).
In a language with just non-termination, these terms are con-
textually equivalent. However, if the argument f can raise an

Equivalent source terms, inequivalent in lang. with exceptions: 



Ensuring Full Abstraction via Types
[New et al. ICFP’16]
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C = ([·] �(x : bool). raise x)
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Dynamic Secure Compilation

1.  Cryptographically enforced: concurrent, distributed langs.

• Join calculus to Sjoin with crypto primitives, preserves and 
reflect weak bisimulation [Abadi et al. S&P’99, POPL'00, I&C'02]

• Pi-calculus to Spi-calculus [Bugliesi and Giunti, POPL'07]

• F# with session types to F# with crypto primitives [Corin et 
al., J. Comp. Security'08]

• Distributed WHILE lang. with security levels to WHILE 
with crypto and distributed threads [Fournet et al, CCS'09]

• TINYLINKS distributed language to F7 (ML w. refinement 
types), preserves data and control integrity[Baltopoulos and 
Gordon, TLDI'09]



Dynamic Secure Compilation

2.  Dynamic Checks / Runtime Monitoring

• STLC with recursion to untyped lambda-calc, proved fully 
abstract using approximate back-translation. Types erased 
and replaced w. dynamic checks. [Devriese et al. POPL’16] 

• f* (STLC with refs, exceptions) to js* (encoding of 
JavaScript in f*). Defensive wrappers perform dynamic 
type checks on untyped js* [Fournet et al. POPL’13]

• Lambda-calc to VHDL digital circuits, run-time monitors 
check that external code respects expected 
communication protocol [Ghica and Al-Zobaidi ICE'12]



Dynamic Secure Compilation

3.  Memory Protection Techniques

(a)  Address space layout randomization (ASLR)    

• STLC w. abstract memory, to target with concrete 
memory; show probabilistic full abstraction for large 
memory [Abadi-Plotkin TISSEC'12]

• Added dynamic alloc, h.o. refs, call/cc, testing hash of 
reference, to target with probref to reverse hash 
[Jagadeesan et al. CSF'11]



Dynamic Secure Compilation

3.  Memory Protection Techniques

(b)  Protected Module Architectures (PMAs) (e.g., Intel SGX) 
protected memory with code and data sections, and 
unprotected memory

• Secure compilation of an OO language (with dynamic 
allocation, exceptions, inner classes) to PMA; proved fully 
abstract using trace semantics.  Objects allocated in 
secure memory partition [Patrignani et al. TOPLAS'15]



Dynamic Secure Compilation

3.  Memory Protection Techniques

(c)  PUMP Machine  architecture tracks meta-data, registers 
and memory locations have tags, checked during execution

• Secure compartmentalizing compiler with mutually 
distrustful compartments that can be compromised by 
attacker.  OO lang to RISC with micro policies     
[Juglaret et al. 2015]



Dynamic Secure Compilation

4.  Capability Machines

• C to CHERI-like capability machine: give calling convention 
that enforces well-bracketed control-flow and 
encapsulation of stack frames using local capabilities; 
proved using logical relation [Skorstengaard et al. ESOP'18]



Secure Compilation: 
Open Problems

1.  Need languages / DSLs that allow programmers to easily 
express security intent.  

• Compilers need to know programmer intent so they can 
preserve that intent (e.g., FaCT, a DSL for constant-time 
programming [Cauligi et al. SecDev'17] 

2.   Performant secure compilers

• Static enforcement avoids performance overhead, could 
run on stock hardware; need richly typed compiler IRs

• Dynamic enforcement when code from static/dynamic and 
safe/unsafe languages interoperates (e.g., h/w support)

• Better integration of static and dynamic enforcement... 



• Better integration of static and dynamic enforcement... 
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Secure Compilation: 
Open Problems

3.  Preserve (weaker) security properties than contextual equiv.  

• Full abstraction may preserve too many incidental/
unimportant equivalences and has high overhead for 
dynamic enforcement

4.   Security against side-channel attacks

• Requires reasoning about side channels in source language, 
which is cumbersome.  Can DSLs help? 

• Correctness-Security Gap in Compiler Optimizations [D'Silva et 
al. LangSec'15].  Make compilers aware of programmers' 
security intent to take into account for optimizations.



Secure Compilation: 
Open Problems

5.  Cryptographically enforced secure compilation

• e.g., Obliv-C ensures memory-trace obliviousness using 
garbled circuits, but no formal proof that it is secure

6.  Concurrency (beyond message-passing, targeting untyped 
multi-threaded assembly)

7.  Easier proof techniques and reusable proof frameworks 
(trace-based techniques, back-translation, logical relations, 
bisimulation)



Final Thoughts

It's an exciting time to be working on secure compilation!

 

•   Numerous advances in the last decade, in PL/formal 
methods and systems/security.

•   For performant secure compilers, will need to integrate 
static and dynamic enforcement techniques, and provide 
programmers with better languages for communicating 
their security intent to compilers.




