Formal Approaches to
Secure Compilation

Amal Ahmed

Northeastern University & Inria Paris

Secure Compilation

building compilers that ensure
security properties of source programs
are preserved in target programs

Java source code

package Bank;

public class Account{
private int balance = 0;

public void deposit(int amount) {
this.balance += amount;

}
}

Java source code

package Bank;

public class Account{
private int balance = 0;

public void deposit(int amount) {
this.balance += amount;

}
}

compiled to C target code

typedef struct account_t {

int balance = 0;

void (*deposit) (struct Account™, int) = deposit_f;
} Account;

void deposit_f(Account™ a, int amount) {
a—balance += amount;
return;

}

Java source code

package Bank;

public class Account{

private int balance = 0;
- gap between source

public void deposit(int amount) { and target abstradtions
this.balance += amount;
}
}

- need some mechanism

compifiy Bhde Balanrcede target

typedef struct account_t {

int balance = 0; N how do we pro e that
volid (“deposit) (struct Account™, |int Fe posit_f

d deposit f(A 2 Egneeot)se{curlty propertigs
Vol eposit_ ccoun a, Tonteoght
a—balance += amount; cos and hOW are source

L properties expregsed

Security Properties as
Program Equivalences

Security Properties as
Program Equivalences

Example: Integrity

public proxy(callback : Unit — Unit)
: Int {
var secret = 0;
callback();

: public proxy(callback : Unit — Unit):
: : Int { :
var secret = 0;

callback();

return 0;

return 0;

return 1;

Security Properties as
Program Equivalences

Example: Confidentiality

private secret : Int = 0;

public setSecret() : Int {
secret = 1;
return 0;

}

: private secret : Int = 0;

; public setSecret() : Int {E
secret = 0; :
return 0;

Security Properties as
Program Equivalences

Example: Unbounded vs. finite memory

public kernel(n : Int, callback : Unit
— Unit) : Int {

callback();
// security-relevant code

}-return 0; EGB{IE"EQFHQ{("H"?"in ngfﬁgéﬁ"?mﬁﬁli"

— Unit) : Int {

callback();
// security-relevant code
return 0;

Security Properties as
Program Equivalences

Example: Memory Allocation Order

public newObjects() : Object {
var X = new Object();
var y = new Object();
return

}

:public newObjects() : Object {:
var X new Object(); :
var y = new Object();

return v;

This Talk ...

|. Preserving security properties expressed as
some form of equivalence
- contextual equivalence

(different for C, ML, Gallina, DSLs)

- observer-sensitive equivalence
(e.g., noninterference in security-typed languages)

- timing/resource-sensitive equivalence
(e.g., security of constant-time code)

This Talk ...

|. Preserving security by preserving equivalence

2. Different compilation targets and threat models
- is the target language typed or untyped?
- what observations can the attacker make?

3. Different ways of enforcing secure compilation
- static checking

- dynamic checking (e.g., runtime monitoring,
cryptographic & hardware enforcement)

4. Proof techniques
- "back-translating” target attackers to source

Fully Abstract Compilation

Preserve and reflect contextual equivalence

el e’
~oCtX
~S
]
~oCtX
~T

el e’

Fully Abstract Compilation

Preserve contextual equivalence

e

compile

d

Guarantees that @ will remain as
secure as € when executed in
arbitrary target-level contexts

i.e. target contexts (attackers d) can
make no more observations about €
than a source context can make about €

Ensuring Full Abstr./ Secure Comp.

source Eq

o O+
ad

Must ensure that any a we link with behaves like some source context

Ensuring Full Abstr./ Secure Comp.

source Eq

s]+
ad

|. Add target features to the source language.

Ensuring Full Abstr./ Secure Comp.

source Eq

o O+
ad

|. Add target features to the source language.
2. Dynamics checks: catch badly behaved code in the act.

Ensuring Full Abstr./ Secure Comp.

source €5

d

|. Add target features to the source language.
2. Dynamics checks: catch badly behaved code in the act.

3. Static checks: rule our badly behaved code in the first place

Type-Preserving Compilation

e:T ~» e:T"

Type-Preserving Secure Compilation

Preserve well-typedness & equivalence

. T

el

Type-Preserving Compilation
e:T ~ e :T"

System F to Typed Assembly Language
[Morrisett et al. POPL’97, TOPLAS'98]

Typed compilation of Featherweight Java to F-omega,
private fields to existential type [League et al. TOPLAS'02]

FINE (F# with refinement & affine types) to DCIL
(dependent CIL) [Chen et al. PLDI’| 0]

Security-type-preserving compilation from WHILE lang. to
stack-based TAL (both languages satisfy noninterference).
Extended to concurrent setting with thread creation,
secure scheduler [Barthe et al. 2007, 2010]

Type-Preserving Secure Compilation

Preserve well-typedness & equivalence

. T

el

Challenge: Proving Full Abstraction

Suppose ' Fe; :T~ejand I'Hey : T~ €)

F"G Ngmegi’f

' ke~ th:z: ey "

Challenge: Proving Full Abstraction

Suppose ' Fe; :T~ejand I'Hey : T~ €)
Given:

ke =% er: T No Cg can
distinguish €1, €2

' ke~ th:z: ey "

Challenge: Back-translation

|. If target is not more expressive than source, use the same
language: back-translation can be avoided in lieu of
wrappers between T and T

* Closure conversion: System F with recursive types
[Ahmed-Blume ICFP’08]

o f* (STLC with refs, exceptions) to js* (encoding of
JavaScript in f*) [Fournet et al. POPL’| 3]

Challenge: Back-translation

2. If target is more expressive than source
(a) Both terminating: use back-translation by partial
evaluation

* Equivalence-preserving CPS from STLC to System F
[Ahmed-Blume ICFP’[|]

* Noninterference for Free (DCC to Fw)
[Bowman-Ahmed ICFP’| 5]

(b) Both nonterminating: use ??
back-trans by partial evaluation is not well-founded!

Observation: if source lang. has recursive types,
can write interpreter for target lang. in source lang.

Fully Abstract Closure Conversion
Source: STLC + 1 types [New et al. ICFP’16]

Target: System F + d types + 1 types + exceptions

First full abstraction result where target has exceptions but
source does not.

Earlier work, due to lack of sufficiently powerful back-
translation techniques, added target features to source.

Proof technique: Universal Embedding
* Untyped embedding of target in source

* Mediate between strongly typed source and untyped
back-translation

Fully Abstract Closure Conversion

Source: STLC + p types [New et al. ICFP16]

Target: System F + d types + 1 types + exceptions

Equivalent source terms, inequivalent in lang. with exceptions:

e1 = Af. (f true;f false; ()) e2 = M. (f false;f true;())
(' = catch y = ([-] (Ax.raisex)) in y

C'le1] J true C'leo| || false

|ldea: use modal type system at target to rule out linking
with code that throws unhandled exceptions

Ensuring Full Abstraction via Types

[New et al. ICFP’16]

e1 ~<7 eyt (bool — 1) — 1

(bool — E0 1) —EO0 1

£

C :(bool — E bool 1) — E bool 1

C = (['] (A(x :bool). raise x)

Dynamic Secure Compilation

el e’

Dynamic Secure Compilation

|. Cryptographically enforced: concurrent, distributed langs.

* Join calculus to Sjoin with crypto primitives, preserves and
reflect weak bisimulation [Abadi et al. S&P’99, POPL'00, I&C'02]

* Pi-calculus to Spi-calculus [Bugliesi and Giunti, POPL'07]

* F# with session types to F# with crypto primitives [Corin et
al,,]. Comp. Security'08]

* Distributed WHILE lang. with security levels to VWHILE
with crypto and distributed threads [Fournet et al, CCS'09]

* TINYLINKS distributed language to F/ (ML w. refinement

types), preserves data and control integrity[Baltopoulos and
Gordon, TLDI'09]

Dynamic Secure Compilation

2. Dynamic Checks / Runtime Monitoring

* STLC with recursion to untyped lambda-calc, proved fully
abstract using approximate back-translation. Types erased
and replaced w. dynamic checks. [Devriese et al. POPL’| 6]

o f* (STLC with refs, exceptions) to js* (encoding of
JavaScript in f¥). Defensive wrappers perform dynamic
type checks on untyped js* [Fournet et al. POPL’| 3]

* Lambda-calc to VHDL digital circuits, run-time monitors
check that external code respects expected
communication protocol [Ghica and A-Zobaidi ICE'l 2]

Dynamic Secure Compilation

3. Memory Protection Techniques
(a) Address space layout randomization (ASLR)

 STLC w. abstract memory, to target with concrete
memory; show probabilistic full abstraction for large
memory [Abadi-Plotkin TISSEC'| 2]

* Added dynamic alloc, h.o. refs, call/cc, testing hash of

reference, to target with probref to reverse hash
[Jagadeesan et al. CSF'I |]

Dynamic Secure Compilation

3. Memory Protection Techniques

(b) Protected Module Architectures (PMAs) (e.g., Intel SGX)
protected memory with code and data sections, and
unprotected memory

* Secure compilation of an OO language (with dynamic
allocation, exceptions, inner classes) to PMA; proved fully
abstract using trace semantics. Objects allocated in
secure memory partition [Patrignani et al. TOPLAS'| 5]

Dynamic Secure Compilation

3. Memory Protection Techniques

(c) PUMP Machine architecture tracks meta-data, registers
and memory locations have tags, checked during execution

* Secure compartmentalizing compiler with mutually
distrustful compartments that can be compromised by

attacker. OO lang to RISC with micro policies
[Juglaret et al. 2015]

Dynamic Secure Compilation

4. Capability Machines

* C to CHERI-like capability machine: give calling convention
that enforces well-bracketed control-flow and
encapsulation of stack frames using local capabilities;
proved using logical relation [Skorstengaard et al. ESOP'| 8]

Secure Compilation:
Open Problems

|. Need languages / DSLs that allow programmers to easily
express security intent.

 Compilers need to know programmer intent so they can
preserve that intent (e.g., FaCT, a DSL for constant-time
programming [Cauligi et al. SecDev'l 7]

2. Performant secure compilers

* Static enforcement avoids performance overhead, could
run on stock hardware; need richly typed compiler IRs

* Dynamic enforcement when code from static/dynamic and
safe/unsafe languages interoperates (e.g., h/w support)

* Better integration of static and dynamic enforcement...

* Better integration of static and dynamic enforcement...

SGCUI’G}/ i i i \f/

compilers
Gradually Typed IR

Secure Compilation:
Open Problems

3. Preserve (weaker) security properties than contextual equiv.

* Full abstraction may preserve too many incidental/

unimportant equivalences and has high overhead for
dynamic enforcement

4. Security against side-channel attacks

* Requires reasoning about side channels in source language,
which is cumbersome. Can DSLs help!?

* Correctness-Security Gap in Compiler Optimizations [D'Silva et
al. LangSec'l 5]. Make compilers aware of programmers’
security intent to take into account for optimizations.

Secure Compilation:
Open Problems

5. Cryptographically enforced secure compilation

e e.g., Obliv-C ensures memory-trace obliviousness using
garbled circuits, but no formal proof that it is secure

6. Concurrency (beyond message-passing, targeting untyped
multi-threaded assembly)

/. Easier proof techniques and reusable proof frameworks
(trace-based techniques, back-translation, logical relations,
bisimulation)

Final Thoughts

It's an exciting time to be working on secure compilation!

* Numerous advances in the last decade, in PL/formal
methods and systems/security.

* For performant secure compilers, will need to integrate
static and dynamic enforcement techniques, and provide
programmers with better languages for communicating
their security intent to compilers.

